
Lab 3: Stateful Session Beans

In this lab, you will create a stateful session bean that lets a teacher enter test scores into an application. The
teacher will enter scores in batches, and is interested knowing how many scores were in the batch and the
average score. The batch information is not terribly important, however, so the application does not save the
data persistently. Therefore, you will use a stateful session bean instead of an entity bean to keep track of the
batch information.

In a real application, this stateful bean would interface with entities that would save the actual test score data
persistently. However, in this lab, for simplicity, the test score records will not be saved in a database.

Here is a UML diagram:

Figure 1: UML Class Diagram

The AddScores interface represents the client's view of the stateful session bean. It defines methods to let the
user add a score to the batch, retrieve the count of batched scores, retrieve the average score for the batch and
set and retrieve the test name.

The data for each test score consists of the student's name and the test score.

Objectives:

• To write stateful a session EJB
• To investigate the stateful session bean lifecycle

Part 1: Stateful Session Bean

Lab 3 - 1
Copyright  Descriptor Systems 2008. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



Steps:

_1. You need to create an EJB project for your EJB. Follow these steps:

a. Start Eclipse if it's not running.

b. Choose File - New EJB Project

c. On the first wizard page, for the Name, enter lab03EJB, then at the bottom of the page, click the
Add project to an EAR checkbox and enter lab03EAR. Press Next.

d. On the next wizard page, uncheck the Create an EJB client JAR... checkbox, then press Finish.

e. You should see the new EJB and EAR projects in the Project Explorer.

_2. In the Project Explorer pane, expand the lab03EJB/Deployment Descriptor: lab03EJB -- you should see
an empty folder for Session Beans.

_3. Right-click on the Session Beans folder and choose New - Session Bean. Complete the wizard:

a. On the first wizard page, for the EJB project, select lab03EJB.

For the Java package, enter scores.

For the Classname, enter AddScoresBean.

For the State type, select Stateful.

In the Create business interface section, note that the local interface is selected. Then enter
scores.AddScores for the interface name. Press Next.

b. On the next wizard page, uncheck the Inherited abstract method and Constructors from superclass
checkboxes, then press Finish.

_4. In the Project Explorer, expand Session Beans/AddScoresBean -- you should see two entries:

• AddScores represents the bean's local business interface (note the "L" in the icon)
• AddScoresBean represents the bean's implementation class

_5. Double-click AddScores to open the business interface into the Java editor. Note how the wizard inserted
the @Local annotation, then within the interface, write the business method definitions as described in the
UML diagam in Figure 1.

Press Ctrl+S to save.

_6. Edit AddScoresBean. From the Eclipse menu, choose Source - Override/Implement Methods and select all
of the methods from the AddScores interface.

Eclipse writes method stub implementations. For methods that return a value, the stubs return a
"placeholder" value of either zero or null.

_7. Now it's time to complete the EJB implementation. Follow these steps:

a. To save the test scores, you should define a HashMap as a private field:

private HashMap<String, Integer> scores =
new HashMap<String, Integer>();

Use Source - Organize Imports to import java.util.HashMap.

b. In the addScore method, to add a student name (key) and score, use the HashMaps's put method, for
example:

Lab 3 - 2
Copyright  Descriptor Systems 2008. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



scores.put(name, score);

c. In the getAverageScore method, to calculate the average score, use the HashMap's keys method to
retrieve a list of student names and then use a for loop. Your code might look something like:

double total = 0;
Set<String> keys = scores.keySet();
for(String key : keys)
{

int score = scores.get(key);
total += score;

}
return total/scores.size();

d. In the getCount method, to determine the count of scores, use the HashMap's size method.

e. For the test name, define a private String field. Your getTestName method can simply return the
String and the setTestName can accept a String and assign it to the field.

f. For the flushBatch method, first annotate this method with @Remove so that the EJB container
knows it's OK to end the session and garbage collect the stateful session EJB.

If you were writing a real-world program, at this point you would write the accumulated scores to a
database, but for now, complete the method by simply calling the HashMap's clear method.

Use Source - Organize Imports so that Eclipse imports the required type for the @Remove
annotation.

Part 2: Using a Web Client

In this part, you will write a servlet that acts as a client to the AddScores stateful session EJB.

Steps:

_1. Choose File - New - Dynamic Web Project. Complete the wizard:

a. Enter lab03Web for the Project name.

At the bottom of the wizard page, put a checkmark next to the Add project to EAR box, then ensure
that the EAR Project Name is lab03EAR (the same EAR that contains the EJB project). Press
Finish.

b. In the Project Explorer, right-click on the lab03Web project and choose Build Path - Configure
Build Path to start a wizard so you can set up a reference from the Web project to the EJB project.

c. On the Java Build Path page, click the Projects tab, then press the Add button and select lab03EJB,
then press OK followed by OK to return to Eclipse.

_2. Import two fully completed JSPs via the File System from the {Lab Installation
directory}/starters/ejblab03:

a. In the Project Explorer, right-click on the new project's WebContent folder and choose Import... to
start the import wizard.

b. On the first wizard page, choose General - File system, then press Next.

Lab 3 - 3
Copyright  Descriptor Systems 2008. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



c. On the next wizard page, for the From directory, press the Browse button and navigate to the {Lab
Installation Directory}/starters/ejblab03 folder, then press OK. If your computer has the standard
lab setup, the proper directory is:

c:\j2eeclass\starters\ejblab03

In the left pane, click on the ejblab03 to highlight it, then put a checkmark next to index.jsp and
addScore.jsp entries in the right pane as shown in Figure 2:

Figure 2: Import Wizard

Press Finish to complete the import. You should see the imported files in the project's WebContent
folder.

d. Open index.jsp into the editor and note how it defines an HTML form into which the user can enter

Lab 3 - 4
Copyright  Descriptor Systems 2008. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



a "test name". When submitted, the form invokes a servlet named CreateBatchServlet that you will
write in a moment.

e. Open addScore.jsp into the editor and note how it defines an HTML form into which the user can
enter a "student name" and a "test score". This form invokes a servlet named AddScoreServlet that
you will write in a moment.

Note also how the form has three "submit" buttons:

• An "Add Score" button, that when pressed, adds the current test score to the batch.
• A "New Batch" button, that when pressed, finishes the current batch and starts a new one.
• A "Done" button, that when pressed, terminates the current batch and sends the user back to

the home page.

Note: You can ignore any errors in Eclipse in addScore.jsp complaining about a "tag library
descriptor".

_3. Next, create the Java class for the CreateBatchServlet. Follow these steps:

a. In the Project Explorer, in the lab03Web project, right-click on Java Resources: src and choose New
- Servlet to start the wizard.

b. On the first wizard page, for the Java package enter servlets.

For the Class name, enter CreateBatchServlet, then press Next.

c. On the next page, note the URL Mapping, which assigns a URL to the servlet, then press Next.

d. On the next wizard page, uncheck the doPost checbox, then press Finish. Eclipse opens the servlet
class into the editor.

_4. Your next job is to complete the CreateBatchServlet.

This servlet will create an instance of the AddScores stateful session EJB you wrote in the last part.
Unfortunately, we cannot use dependency injection to retrieve the reference, since the application needs a
new AddScores instance every time the user navigates to the index.jsp home page.

So instead of using dependency injection, the servlet will perform a JNDI lookup. The servlet will then
store the EJB's reference in the HTTP session, and transfer control to the "Add Scores" page. Follow these
steps to complete the servlet:

a. In the servlet's doGet method, write code to create an initial JNDI context and retrieve a reference to
the stateful EJB, thus creating an instance:

Context ctx = new InitialContext();
AddScores batch = (AddScores)ctx.lookup(

"lab03EAR/AddScoresBean/local");

Use Source - Organize Imports to import the proper types.

Note: Ignore errors regarding unhandled exceptions for the time being.

b. Retrieve the test name that the user entered into the HTML form and set it into the EJB:

String testName = request.getParameter("testName");
batch.setTestName(testName);

c. Create an HTTP session, store the EJB reference in it, then transfer to the addScores.jsp:

Lab 3 - 5
Copyright  Descriptor Systems 2008. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



HttpSession session = request.getSession();
session.setAttribute("batch", batch);

response.sendRedirect("addScore.jsp");

Use Source - Organize Imports to import the proper types.

d. Highlight all of the lines within the doGet method and use Source - Surround With - Try/catch
Block so that Eclipse writes simple exception handling.

Save to compile - you should have no errors.

_5. In the same fashion as in an earlier step, create a new servlet named AddScoresServlet in the servlets
package. The new servlet should override only doGet.

_6. This new servlet has several jobs. To get started, write code to respond to the "Add Score" button:

a. In the servlet's doGet method, first attempt to retrieve the EJB reference from the HTTP session. If
it's not there, perhaps because the user skipped the home page, send them back to the home page:

HttpSession session = request.getSession();
AddScores batch = (AddScores)session.getAttribute("batch");
if (batch != null)
{

}
else

response.sendRedirect("index.jsp");

b. Inside the "if" statement, write a nested "if" to determine which button the user pressed:

String action = request.getParameter("action");
if (action.equals("Add Score"))
{

}

c. Within the "if", retrieve the data that the user entered and set it into the stateful EJB. Then send the
user back to the HTML form so they can enter another score:

String studentName = request.getParameter("studentName");
String score = request.getParameter("score");
batch.addScore(studentName, Integer.parseInt(score));
response.sendRedirect("addScore.jsp");

d. After the closing brace of the nested "if", write an "else if" to determine if the user pressed the "New
Batch" button:

else if (action.equals("New Batch"))
{

}

Lab 3 - 6
Copyright  Descriptor Systems 2008. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



e. Within the "else if", retrieve the current EJB's name, then call its flushBatch method. Recall that you
annotated flushBatch with @Remove -- when you call this method, the container gets rid of the
EJB.

String testName = batch.getTestName();
batch.flushBatch();

Then use JNDI to retrieve another EJB reference, which creates a new stateful EJB. Note that you
can copy and paste from the CreateBatchServlet to save typing:

Context ctx = new InitialContext();
batch = (AddScores)ctx.lookup("lab03EAR/AddScoresBean/local");

Set the new EJB's name to the test name, then store its reference in the HTTP session and send the
user back to the addScores.jsp:

batch.setTestName(testName);
session.setAttribute("batch", batch);
response.sendRedirect("addScore.jsp");

Highlight all of the lines within the "else if" block and use Source - Surround With - Try/catch
Block.

f. After the closing brace of the "else if", determine if the user pressed the "Done" button. If so, flush
the batch and send the user back to the home page:

else if (action.equals("Done"))
{

batch.flushBatch();
response.sendRedirect("index.jsp");

}

g. Use Source - Organize Imports as necessary and save to compile. Ensure that you have no errors.

_7. To test your program, right-click on index.jsp and choose Run As - Run on Server. You should be able to
create a batch, add scores, flush the batch and return back to the home page.

Optional Part 3: Standalone Java Client

In this part, you will write a standalone Java client program for the AddScores EJB.

Steps:

_1. Using the same techniques as you did in the last lab, create a new Java project named lab03Client.

_2. As in the last lab, create (or copy) a jndi.properties file in the project's root directory. The properties file
should contain connection parameters for the server.

_3. Create a Java class named Client in the client package with a main method.

Lab 3 - 7
Copyright  Descriptor Systems 2008. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



Complete main so it:

• Creates an initial JNDI context
• Retrieves the business interface reference via JNDI
• Sets the test name
• Adds a few student-name / score pairs
• Displays the count and average score to the console
• Displays the test name by calling the getTestName method
• Flushes the batch

_4. Test your client as before.

Lab 3 - 8
Copyright  Descriptor Systems 2008. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.


