
Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

In some ways, stateful beans are similar to local Java classes -- you can call their methods
expecting the methods to modify the bean's internal state. But like all EJBs, they operate within
the bounds of a container, which provides transactions and security (we will cover those topics
later).

The notion mentioned here about moving functionality to the server is a common theme in
client/server programming. By moving common function to the server, you allow for "thinner"
clients. It's also easier to maintain the system -- if you decide to change the behavior, you only
need to modify code on the server instead of on all of the clients.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Stateful beans can define fields just like local Java classes do -- the container will guarantee
that the bean's state is maintained across method calls. That lets you write the normal
"get/set" methods that JavaBean developers are accustomed to writing.

But remember that the container does not store the instance data persistently, so when the
client is done with the bean (or the container crashes), the state is lost. This is in contrast with
entity beans, which we will cover later.

So the real use of stateful beans is to let your application maintain state in a similar fashion to
HTTP sessions. In other words, you can use a series of requests (methods) from the client to
accomplish a complex task.

container

setWhatever()

getWhatever()

Client



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

For conversational state and parameterized create methods to work, the container must
guarantee that each bean instance (and EJB object) is dedicated to a single client. Thus the
container cannot perform instance pooling as it can with stateless beans. That means that
containers cannot manage the storage for stateful beans as efficiently as for stateless beans,
where a small number of beans can service large numbers of clients.

Another possible bad side-effect is that if you have many clients using stateful beans, the
container could eventually run out of memory. In a moment, we will see that the container can
essentially temporarily "page out" beans to help manage its working set.

container

Client

Client



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Stateful beans have a different lifecycle from stateless beans. Since they are not pooled, they
go directly to the "ready" state at creation and are assigned to a single client. They can return
to the non-existent state if the client calls a "remove" method.

If the container decides it's appropriate, it can save the bean's state somewhere and remove
the bean from memory. This is referred to as passivation</i>. If the client again accesses the
SFSB, the container re-creates the bean and initializes it from the saved state: this is referred
to as activation</i>. Note that a container can remove passivated beans permanently -- most
containers use a timeout period after which they "reap" beans that have not been accessed in a
long time.

We will cover transactions later, but note that the only transition out of the in-transaction
state is back to method-ready -- the container will not passivate or remove beans that are
involved in transactions.

Does not
exist

Method-
ready (no TX)

Method-
ready (in TX)

Passivated

TX - transaction



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

When the client retrieves a reference, the container instantiates the bean implementation,
injects resources, and optionally calls any @PostConstruct method. The bean is now in the
method-ready state and assigned to that particular client.

It's important to note that the container creates a new SFSB instance each time you use JNDI to
look up the EJB's business interface reference. In other words, there's no explicit "create"
method -- the act of doing the JNDI lookup creates the instance.

Also note that servlets should not use dependency injection on a field to reference a SFSB
instance, since servlets are multithreaded and the single field value would be intermingled
across multiple users. Instead, servlets use JNDI look ups to create instances and then store the
SFSB references in the HTTP session.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

At the container's discretion, it can manage memory by removing SFSBs from storage, first
saving their state in some sort of disk-based storage.

Before passivating, the container optionally calls any method marked with @PrePassivate.

The client's reference is unaffected by passivation-- as far as the client's concerned, nothing's
happened to its bean.

Note that the storage used for passivation is not permanent -- when the container shuts down,
it's free to delete the passivated objects. Remember that all session beans are non-persistent!



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The container tracks which beans are in memory and which are passivated. When the client
references a passivated bean, the container creates a new bean instance, attaches it to the
client's reference and re-initializes the bean from the passivated store. The container then
calls any method annotated with @PostActivate. The container then re-runs the original
method.

The client is unaware of this entire process except that the method may take a bit longer than
expected.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Providing "remove" methods is a best practice since it makes it easier for the container to
manage memory.

You can specify "remove" methods either with the annotation or in the EJB deployment
descriptor.

Since there is no instance pooling for stateful beans, when the client removes the remote
reference, the container can immediately make the bean available for garbage collection. The
container does first call any method annotated with @PreDestroy before making the instance
available for garbage collection.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The Java language includes the transient</i> keyword which the container examines to
determine if a particular field should be saved during passivation. The idea is that the bean
may have temporary or calculated fields (especially large ones) that don't need to be saved
since they can be re-calculated when the bean is activated. You should mark any such fields as
transient.

Java serialization is a standard API that makes it pretty easy to save the state of an object --
we saw an example of it earlier when a client serialized an object handle. The container
vendor is free to use serialization, but can use some other technique if it so chooses, perhaps
for better performance or to take advantage of existing infrastructure.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This notion is similar to the session time in HTTP-based applications. The issue is that clients
may terminate unexpectedly or "forget" to call the remove method. To protect against runaway
memory (or disk) usage, the container can "reap" beans that have not been accessed for a
certain period.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This makes writing the EJB much simpler, since you don't need to worry about synchronization.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The PostConstruct callback invocations occur before the first business method invocation on
the bean. This is at a point after which any dependency injection has been performed by the
container.

The PreDestroy callback notification signals that the instance is in the process of being
removed by the container. In the PreDestroy lifecycle callback interceptor methods, the
instance typically releases the resources that it has been holding.

The @PrePassivate and @PostActivate methods let a stateful bean correctly manage resources
such as open sockets and database connections, since these should be closed when a bean is
passivated.

As usual, instead of using annotations, you can configure these lifecycle methods in the EJB
deployment descriptor. We will cover interceptors in a later chapter.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Some of the methods in these two interfaces are not often used in EJB3 and are provided for
backward compatibility with EJB2. These methods include:

getEJBHome()
getEJBLocalHome()
getEJBLocalObject()
getEJBObject()



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Instead of writing the annotation, you can write a "resource-ref" stanza in the EJB deployment
descriptor.

The container provides the session-context reference immediately after the instance is
created. Thus, the reference is available for any business-interface method.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Having a choice between stateless or stateful session beans and entity beans is a good thing. It
lets you architect systems that use the best features of each kind of bean. The bottom line is
that many applications that use EJBs will use some combination of each bean type.



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum



Copyright © Descriptor Systems, 2001-2008. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum


