
Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

In a perfect world, or if JDBC was perfect, changing databases would not require any new code.
However, in the real world, if you decide to change databases, at least some of your JDBC code
probably will be affected. The goal of the DAO pattern is to minimize such changes if we do
make a change.

By defining an interface for the DAO, you can minimize the impact of changes on the business
logic. Here we show defining a StudentDAO interface that specifies the required behavior for
any Student data-access object. The Oracle-specific and DB2-specific classes implement the
interface with database-specific behavior.

The DAO Factory interface is an optional part of the pattern that is not really needed in Spring,
since Spring programs generally use dependency injection to "hide" the creation of objects,
including the DAO objects themselves.

You can read more about the DAO design pattern at:

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

<<Interface>>
StudentDAO

DAOFactory

OracleDAO DB2DAO

insertStudent (s:Student):void
findStudent (id:int):Student
removeStudent (s:Student):void
. . .

getStudentDAO():StudentDAO
getAdvisorDAO():AdvisorDAO
. . .

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The snippet of code shown here should look familiar to anyone who's worked much with JDBC.
Note the "try-catch" and "finally" blocks and how such programs need to manually manage
connections.

While this code is not all that conceptually difficult, it is tedious and verbose.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Note that there are many more methods in this class that we didn't show in the figure so that
the figure fits on the page.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The SimpleJdbcTemplate class defines fewer methods than a JdbcTemplate, but if you need the
ones not defined, you can retrieve the composed JdbcTemplate:

JdbcOperations template = myJdbcTemplate.getJdbcOperations()

Note that many of the methods are defined using the Java 5 Object... "varargs" syntax - you
can provide multiple parameters, for example, values to be inserted into several database
columns. In particular, note the "query" method: it accepts a ParameterizedRowMapper object,
which is a class you can write that converts a result-row into an object.

The reason Spring 3 deprecates SimpleJdbcTemplate is that Spring 3 requires Java 5 and the
whole framework was refactored with that in mind. That makes SimpleJdbcTemplate
redundant.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Most applications that access the database use the DAO design pattern. Spring makes it easy
to get started writing DAOs by providing these superclasses.

Note that using these "support" classes is entirely optional - you could instead write your DAOs
to have no Spring superclass, obtain a data source via injection, then create the template
yourself.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The Spring exceptions are unchecked, so you don't need try-catch blocks. This is a standard
Spring philosophy. The idea is that you cannot recover from most JDBC exceptions, so why
clutter the code with all of the try-catch blocks? You will need a try-catch block SOMEWHERE in
the program to avoid uncaught exceptions, however.

To support this, Spring provides the SQLErrorCodeSQLExceptionTranslator class which consults
a Spring-provided table of vendor error codes and their corresponding Spring exceptions.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Connection
Pool Connection

Objects

close()

getConnection()

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

In Spring 1, we used the JndiFactoryBean, but in Spring 2 and later, it's easier to use the
"jndi-lookup" element in the Spring configuration file to retrieve DataSource objects from JNDI.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The DriverManagerDataSource encapsulates a non-pooled JDBC DataSource. Note that we must
provide connection properties.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

With this technique, the programmer does not need to know connection details, only the JNDI
name provided by an administrator.

Spring 1.x provided the JndiObjectFactoryBean, but newer applications should use
jee:jndi-lookup.

If your client is a servlet, you can define a resource reference in the servlet's Web application
deployment descriptor. This is an extra level of indirection that's considered a best practice in
JEE since it insulates clients from changes in the actual JNDI name.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The @Repository annotation is a special case of the @Component annotation designed for use
in the data tier. You have to configure the <context:component-scan> element in the XML to
include the DAO's package.

Note how we use autowiring to obtain the data source reference on a "set" method, then
create the JDBC template that we can use for queries, etc.

Not shown is the interface, StudentDAO, which defines all of the methods that the DAO
provides.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

SimpleJdbcTemplate has quite a few query methods, and its wrapped JdbcTemplate defines
even more (recall that you can retrieve the wrapped JdbcTemplate via getJdbcOperations()).

Many of these query methods use Java 5 generics and varargs so that using them is relatively
easy.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Note how we provide the actual SQL for the query, but we don't have to connect to the
database, create any statements or handle exceptions (if we don't want to). Spring JDBC
handles all of that for us.

NOTE: In Spring 3.2.2 or later, queryForInt() is deprecated. The proper equivalent code is:

int count = template.queryForObject(
 "SELECT COUNT(*) FROM Student", Integer.class);

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Several of the query methods shown on the last page accept a row-mapper object - the
template calls the row-mapper after a query to convert the result(s) to object(s).

Most programmers implement these row-mapper classes as Java "inner classes" within the
DAO.

The ParameterizedRowMapper uses Java 5 generics to type, or parameterize the object that it
returns.

The ParameterizedRowMapper interface is in the package:

org.springframework.jdbc.core.simple

NOTE: In Spring 3.2.2 or later, ParameterizedRowMapper is deprecated in favor of RowMapper,
which has the same syntax and is functionally equivalent.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we are using the query method:

<T> List<T> query(String sql, RowMapper<T> rm, Object... args)

Note that we are passing zero arguments for the last Object... parameter.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we are using the query method:

<T> List<T> query(String sql, RowMapper<T> rm, Object... args)

Note that we are passing a single integer argument for the last Object... parameter. The
template uses that integer to supply the value for the '?' in the SQL. If the SQL had more than
one '?', we could simply pass as many arguments to the "query()" as was needed.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Note that the non-batch versions of these return an integer, which is the count of rows
affected. The batch versions return an array of integers, which are the count of rows affected
for each of the batch operations.

According to the Spring docs:

Most JDBC drivers provide improved performance if you batch multiple
calls to the same prepared statement. By grouping updates into
batches you limit the number of round trips to the database.

There is an example of batching in the Spring docs at:

http://static.springsource.org/spring/docs/2.5.6/reference/jdbc.html

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here are using the update method of the form:

int update(String sql, Object... args)

We supply three values for the Object... varargs parameter that correspond to the three '?' in
the SQL. Note that we are expecting the caller to provide the primary key (studentID).

The update() method returns the count of rows affected. In this case, we'd expect the count to
be one, since we inserted a single row.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Student.java

StudentDAO.java

StudentDAOJdbcImpl.java

DisplayStudents.java

FindStudent.java

InsertStudent.java

spring.xml

web.xml

2 - 21a Student.java

2 - 21b StudentDAO.java

2 - 21c StudentDAOJdbcImpl.java

2 - 21d StudentDAOJdbcImpl.java

2 - 21e DisplayStudents.java

2 - 21f DisplayStudents.java

2 - 21g FindStudent.java

2 - 21h FindStudent.java

2 - 21i InsertStudent.java

2 - 21j InsertStudent.java

2 - 21k spring.xml

2 - 21l web.xml

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

