
Struts Lab 3: Creating the View

In this lab, you will create a Web application that lets a company's fleet manager track fuel purchases for the
company's vehicles. You will concentrate on creating the presentation layer (view) using Struts, JSTL and
HTML tags.

Objectives:

• To work with the View portion of a Struts MVC application
• To use dynamically generated ActionForm classes

Steps:

_1. Ask your instructor for the following information:

Lab Installation directory: __

If your computer has the standard lab setup, the directories will be something like:

Lab Installation Directory: c:\strutsclass

_2. Start WSAD if it's not running and ensure that you are in the Web perspective.

_3. Your first job is to create a project for your lab.

a. Choose File - New - Dynamic Web Project. On the first page of the wizard, enter:

Project name: strutslab03Web
Project location: accept the default
Configure advanced options: checked

Then press Next.

b. On the J2EE Settings Page, enter:

EAR Project: strutslab03EAR

Then press Next.

c. On the Features page, enter:

Struts support: checked

Struts Lab 3 - 1
Copyright Descriptor Systems 2004. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

JSP Standard Tag Library: checked

Then press Finish.

_4. Next you will import some Java files to get you started:

a. Click the JavaSource folder to highlight it, then right-click on JavaSource and choose Import...

Note: In some versions of WSAD, the folder is named JavaResources instead of JavaSource.

b. Choose File System.

c. For the From directory, click the Browse button and navigate to the {Lab Installation
directory}/starters/strutslab03 directory.

d. Expand the strutslab03 folder in the left window pane, then highlight it.

e. Place a checkmark next to the purchase directory, then press Finish.

f. Back in the project, examine the JavaSource folder to see the newly imported files.

_5. Import an HTML file to help you get started:

a. Highlight the WebContent folder, right-click on it, then choose Import....

b. Choose File System.

c. Pull down the drop-down list to get back to the {Lab Installation directory}/starters/strutslab03
directory.

d. Expand and highlight the strutslab03 folder in the left window pane.

e. Place a checkmark next to the purchases.html file, then press Finish.

f. Back in the project, examine the newly imported file and ignore any Broken link warnings for now.

_6. The imported purchase package contains two pre-written classes:

• GasPurchase: A JavaBean class that represents a fuel purchase, with appropriate properties
• PurchaseList: A Singleton class that implements a list of GasPurchases

Please carefully examine these classes and ensure that you understand them, especially the properties in
the GasPurchase class.

_7. The imported input form is purchases.html. You should edit this file and preview it and ensure that you
understand it.

_8. Rename the file to purchases.jsp so it can work with the Struts framework.

_9. Next you must convert the input form so it works with Struts and JSTL. Edit purchases.jsp and update it:

• Write the appropriate taglib directive so you can use the Struts HTML custom actions
• Write the appropriate taglib directive so you can use the JSTL core custom actions
• At the top, under the taglib directives, add the following so your JSP can access the PurchaseList

object. You cannot use the standard jsp:useBean action since it's a Singleton object:

<%
purchase.PurchaseList purchases =

purchase.PurchaseList.getInstance();
pageContext.setAttribute ("purchases", purchases);

%>

Struts Lab 3 - 2
Copyright Descriptor Systems 2004. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

Classes that implement the Singleton design pattern do not expose a public no-argument
constructor, and thus cannot be instantiated by the standard JSP actions. It would probably be a
good idea to write a new custom action so that we could avoid the scripting element, but that's left
as an exercise for the student.

• In the HTML table that displays the current purchases, use the JSTL core forEach action to iterate
through the list of purchases, outputting a row for each purchase, with a column for each property in
the GasPurchase bean. Here is some code to get you started:

<c:forEach var="purchase" items="${purchases.purchaseList}">
<tr>
<td><c:out value="${purchase.purchaseDate}"/></td>
<td><c:out value="${purchase.purchasePrice}"/></td>

. . .
</tr>

</c:forEach>

You should insert this code immediately after the </tr> tag that closes the table header.

• Convert the HTML form so it's a Struts form that references an action named AddPurchase.action.
You will still have an "unresolved" warning since you have not yet defined the action.

• Convert each input, select, option and submit HTML elements. to their Struts equivalents. You
should choose property names that match properties in the GasPurchase JavaBean. Warning: Be
sure to properly close each tag, either explicitly or by using the XML empty-tag syntax!

_10. Next you can create the Action class that will respond to the request:

a. Create a new package named actions in the JavaSource folder.

b. In the new package, create a class named AddPurchase that is a subclass of
org.apache.struts.action.Action.

c. In the new class, override the execute method from the superclass.

Hint: To override a method in WSAD, right-click on the editing pane and choose Source -
Override/Implement Methods. Note that if you do this, be sure to select the correct method from
the superclass (you want the one with "Http" parameters). Also, after overriding, we recommend
that you delete the generated return statement and change the parameter names to something a little
less generic. See the course notes for example names.

You will complete the new method in the next step.

_11. To complete the execute method, follow these steps:

a. In the execute method, cast the generic ActionForm parameter to a variable of type
DynaActionForm.

b. Retrieve all of the user input from the DynaActionForm, storing each as a separate String (we will
convert types in a moment). The fields to retrieve are:

• gallons
• purchaseDate
• creditCard
• discounted
• milesDriven

Struts Lab 3 - 3
Copyright Descriptor Systems 2004. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

• purchasePrice

Here is some code to get you started (assuming that you named the cast DynaActionForm theForm:

String sgallons = (String)theForm.get ("gallons");

c. Convert the non-String properties (gallons, milesDriven and purchasePrice) to double variables.
Here is some code to get you started:

double gallons = Double.parseDouble (sgallons);

d. Create an instance of the GasPurchase JavaBean.

e. Call the setter methods on the JavaBean to set its properties using data extracted from the form.
Note: To set the boolean property, you can use code like:

if (sdiscounted.equals ("on"))
gp.setDiscounted (true);

else
gp.setDiscounted (false);

f. Add the GasPurchase bean instance to the PurchaseList:

PurchaseList purchaseList = PurchaseList.getInstance();
purchaseList.addPurchase (gp);

g. Return a mapping ActionForward with a string: success.

_12. Now you must configure a Form bean for Struts. Follow these steps:

a. Ensure that you are in the Web perspective.

b. Click the Struts Explorer tab at the bottom of the upper-left window pane.

c. Expand the strubslab03Web and default module folders.

d. Right-click the FormBeans folder and choose Add Form Bean.

e. Then enter or select:

Form Bean Name: AddPurchaseForm
Create: selected
Model: dynaform using Dynamic Action Form

Then press Finish.

_13. The dynamic form bean you just created is bereft of properties. To add the properties for the gas-purchase
form, follow these steps:

a. In the Struts Explorer, double-click the newly added form bean to open the Struts Configuration
File Editor.

b. Click on the FormBeans tab at the bottom of the editor pane.

Struts Lab 3 - 4
Copyright Descriptor Systems 2004. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

c. At the top of the editor pane, click on the FormProperties tab.

d. In the Form Properties section, click the Add button and set the new property's name to
purchaseDate.

e. Make sure that purchaseDate is selected, then in the Form Beans Attributes section, set the Type to
java.lang.String.

f. Repeat the two steps above for the remaining properties, each of which should be Strings:

• purchasePrice
• gallons
• milesDriven
• discounted
• creditCard

_14. Next you must configure the Action class. Follow these steps:

a. In the Struts Explorer, right-click the Actions folder and choose Add Action Mapping.

b. Then enter or select:

Action Mapping Path: /AddPurchase
Forwards: Add a single forward:

Name Path
---- ----

success /purchases.jsp

Form Bean Name: AddPurchaseForm
Form Bean Scope: request
An Existing Action Class: selected
Reference: actions.AddPurchase

Then press Finish.

_15. Double-click the newly added action to bring up the Struts Configuration File Editor and ensure that you
are in the ActionMappings tab (see the bottom of the editor pane). In the Action mapping attributes
section, enter or select:

Input: /purchases.jsp

In the Form Bean Specification section, enter or select:

Validate: No

Press Ctrl+S to save your changes.

_16. Press the Source tab at the bottom of the editor and ensure that you understand the Struts configuration
file.

_17. Next, you need to edit the deployment descriptor. Go back to the Project Navigator instead of the Struts
Explorer. Find the Web Deployment Descriptor entry in the WebContent folder and double-click it to
open it in an editor.

Struts Lab 3 - 5
Copyright Descriptor Systems 2004. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

At the bottom of the editor window, press the Servlets tab. Then find the URL Mappings section and
change the *.do entry to *.action.

You should have no broken link warnings after this completing this step.

_18. You can now test your Web application. Find the purchases.jsp file under WebContent, right-click it and
choose Run on server... and press Finish.

You should see an empty Purchases table and a form to let you enter a new purchase. Fill in appropriate
values in the form and press the Add Purchase button -- the action should update the list of purchases
and send you back to the purchases.jsp page (please re-examine the action mapping in the
struts-config.xml file to be sure you understand this).

Try adding a purchase with bad data (e.g. price set to "abcd") -- we will fix this issue in the next lab by
adding validation to the Web application.

Struts Lab 3 - 6
Copyright Descriptor Systems 2004. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

