
Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Writing JavaBeans

2 - 1

What is a JavaBean?
Properties, Methods and 
Events



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The JavaBean specification is available from:

http://java.sun.com/products/javabeans/docs/spec.html

What is a JavaBean?

2 - 2

A JavaBean is a Java class that is designed to 
manipulated by tools or by other programs (.e.
g. JavaServer Pages) in a standard fashion
The JavaBean specification defines the JavaBean 
as the standard component architecture for Java

http://java.sun.com/products/javabeans/docs/spec.html


Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The JavaBean specification was initially created to facilitate GUI builders for rich clients, but since then,
JavaBeans have more widely been used in server-side applications.

Why Use JavaBeans?

2 - 3

JVM

HTTP

JSP Container

Browser

Submit

Some development tools use JavaBeans to let you 
drag and drop to create graphical user interfaces 
(GUI)
JavaServer Pages and other J2EE technologies can 
access JavaBeans that provide state and behavior



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Sun also provides the free Bean Builder tool that is a demonstration program on how to use JavaBeans
to build GUIs.

The Bean Builder is available from:

https://bean-builder.dev.java.net/

JavaBean GUI Toolkits

2 - 4

IBM WebSphere Studio Application Developer
Sun NetBeans
Eclipse with Visual Editor Project Plugin
Borland JBuilder
JetBrains IntelliJ IDEA

https://bean-builder.dev.java.net/


Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The EJB specification is an integral part of J2EE and allows for components that execute remotely. We
will not cover EJBs in this class, but you should be aware that it's very possible to design web
applications that include JSPs, servlets and EJBs. Such designs are complex but scalable, since they
let you separate the business logic onto remote servers. In addition, since the EJB container provides
powerful services, applications that use EJBs can have truly enterprise-class robustness.

JavaBeans versus Enterprise JavaBeans

2 - 5

JVM JVM
HTTP

JSP Container EJB Container

Browser

Submit

Enterprise JavaBeans implement specific 
interfaces so they can run within an EJB 
container that provides services such as 
transactions, security and persistence
EJBs can be invoked remotely, while "normal" 
JavaBeans run in the same JVM as the caller



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This page lists some of the conventions you should follow to create compliant JavaBeans. We will see a
complete example in a few pages.

JavaBean Requirements

2 - 6

A JavaBean is a Java class that follows a few 
simple conventions
To be a proper JavaBean, a Java class should:

Implement the Serializable interface
Be in a named package
Expose properties, methods and events as 
necessary
Define a no-argument constructor
Optionally packaged into a JAR file



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The JavaBean specification provides precise definitions of how to code a JavaBean that provides these
three kinds of features.

JavaBean Features

2 - 7

A JavaBean can expose three kinds of features:

Properties , which are defined using get/set 
methods
Methods , which expose behavior
Events , which let the Bean call back to the 
outside world



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The Java class library defines many visual beans (e.g. JButton, JTextField and so forth) that you can
use "out-of-the-box" and you can also create your own custom visual beans that integrate into GUI
builders.

Non-visual beans generally contain business methods, data (properties) and perhaps fire events. Most
GUI builders supply a mechanism so that GUIs can access non-visual beans.

Visual versus Non-Visual Beans

2 - 8

javax.swing.JComponent

mypackage.MyVisualBean

+ paintComponent(g:Graphics):void
. . .

java.lang.Object

mypackage.MyNonVisualBean

- someData:int

+ getSomeData():int
+ setSomeData(i:int):void
+ myBusLogic():void

Visual beans are designed to appear in a 
graphical user interface (GUI)
Non-visual beans generally define business logic 
and data



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

For example, a JSP container uses reflection and introspection to determine a Bean's features and thus
check that the JSP author accesses the features correctly.

What are Reflection and Introspection?

2 - 9

The Java API includes a technique known as 
reflection that lets a program enumerate the 
public features of any Java class
If the Java class follows some simple naming 
conventions, the examining program can make 
assumptions about the class using a process 
referred to as introspection
For example, if a JavaBean has a two public 
methods, one named getAddress and one named 
setAddress, we can infer that the Bean defines a 
property named address



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This JavaBean method is taken from a StudentBean class.

Writing JavaBean Methods

2 - 10

A JavaBean method is simply a public method 
that exposes a behavior

1    public boolean calcHonorRoll()
2    {
3        if ( getGpa() > 3.5 )
4            return true;
5        else
6            return false;
7    }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Events are almost the opposite of methods -- methods let the outside world invoke behavior on the
bean, while an event is the bean invoking behavior on "listeners", which are objects that have registered
an interest in the event.

Events are especially useful in GUIs, where a user-interface component, say a button, notifies another
object when the user clicks the button.

Note that there can be multiple listeners on a given event. The bean notifies all registered listeners
when the event occurs.

JavaBean events are a variation on the Observer Design Pattern from the Design Patterns book by
Gamma, et. al.

Introduction to Events

2 - 11

listener
listener

listener
listener

Event

Events allow JavaBeans to notify listeners of 
significant occurrences
The following artifacts comprise an event:

An event-object class
An event listener interface
Register/deregister methods on the bean
Firing the event



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The idea is that the bean maintains a list of interested listeners, each of which is typed to the interface
that we define. The bean provides two methods: one to add a listener to the list, another to remove.
Note that the names of these two methods are very significant -- we use introspection to infer the event
name from the method names. In other words, whatever you put as the 'XXX' placeholder above will be
interpreted as the event name.

We also can define a class that describes the event -- note that we pass an instance of the event class
in the interface methods. This is optional -- if you don't have any extra information to pass, you can use
the java.util.EventObject class directly.

Event Architecture

2 - 12

mypackage.MyBean

+ addXXXListener(l:MyListener):void
+ removeXXXListener(l:MyListener):void
. . .

<<interface>>
XXXListener

<<interface>>
java.io.Serializable

+ myMethod(e:MyEventObj)

java.util.EventObject

mypackage.MyEventObj

- someData

SomeListener

*



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The Java class library (especially in the java.awt.event package) defines several event-object classes
and you can write your own as we did here.

The standard EventObject superclass basically wraps a reference to the JavaBean that fired the event.

The Event Object Class

2 - 13

Event objects carry information about the event

1    public class FlunkEvent extends java.util.EventObject
2    {
3        private String courseName;
4        
5        public FlunkEvent(Object src, String coursName)
6        {
7            super(src);
8            this.courseName = coursName;
9        }    
10       public String getCourseName()
11       {
12           return courseName;
13       }
14       public void setCourseName(String courseName)
15       {
16           this.courseName = courseName;
17       }
18   }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The listener interface defines the behavior(s) that any listener must provide.

Generally, the interface methods will take an event object as described on the last page.

Event Listener Interfaces

2 - 14

An event is essentially a callback from the 
JavaBean to the interested party
The interested party must therefore define 
method(s) that the JavaBean can call
We enforce this requirement using listener 
interfaces

1    public interface FlunkListener 
2      extends java.util.EventListener
3    {
4      public void studentFlunked(FlunkEvent evt);
5    }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Tools that examine JavaBeans use reflection and introspection to make inferences based on naming
patterns. According to the JavaBean specification, if a bean provides methods named addXXXListener
and removeXXXListener, we can infer an event named XXX.

Registering for an Event

2 - 15

addFlunkedOutListener()
removeFlunkedOutListener()

FlunkedOut

These methods imply... an event named:

The JavaBean provides methods to allow interested 
listeners to add or remove themselves from the 
JavaBean's list of listeners
It's the existence of the add/remove methods that 
allow tools to infer the event



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The code to implement registering and de-registering listeners is trivial. Note, however the type of the
arguments -- it's the type of the listener interface!

Registering for an Event, cont'd

2 - 16

1    public class Student implements Serializable
2    {
3    . . .    
4        private Vector listeners = new Vector();
5        
6        public synchronized void 
7          addFlunkedOutListener (FlunkListener fl)
8        {
9            listeners.add(fl);
10       }   
11       public synchronized void 
12         removeFlunkedOutListener(FlunkListener fl)
13       {
14           listeners.remove(fl);
15       }
16   . . .
17   }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The code shown here first copies the listener list in an atomic block (so that we don't get messed up if a
listener attempts to add or remove itself while we're firing the event). Then it's a simple matter of
traversing the list, calling the event method on each listener.

Of course, we need to call this method at some point -- that's sometimes the tricky part -- figuring out
when to actually fire the event. We'll look at that in more detail for the Student bean in a moment.

Firing an Event

2 - 17

When the significant occurrence happens, the 
JavaBean fires the event by traversing the listener 
list, calling the interface method(s) on each listener

1    protected void fireFlunkedOutEvent(String course)
2    {
3        Vector copy = null;
4        FlunkEvent evt = new FlunkEvent(this,course);
5            
6        synchronized(this) 
7        { 
8            copy = (Vector)listeners.clone(); 
9        }
10       Iterator iter = copy.iterator();
11       while (iter.hasNext())
12       {
13        ((FlunkListener)iter.next()).studentFlunked(evt);
14       }
15   }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we show a simple class that demonstrates listening to an event. The class implements the listener
interface and then registers an object. Then, when we set the GPA to a low value, the JavaBean will
fire the FlunkedOut event.

Event Consumers

2 - 18

Objects that are interested in the event must 
implement the event-listener interface and then 
register for the event

1    public class RespondToFlunk implements FlunkListener
2    {
3        public void studentFlunked(FlunkEvent evt)
4        {
5            System.out.println("Flunking: " + 
6                    evt.getCourseName());
7        }
8    
9        public static void main(String[] args)
10       {
11           RespondToFlunk me = new RespondToFlunk();       
12           Student s = new Student();
13           s.addFlunkedOutListener(me);
14           s.setGpa(0.4);
15       }
16   }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Properties represent the data of a JavaBean and are probably the most-used feature of JavaBeans.

JavaBean Properties

2 - 19

A property exposes state from a JavaBean
There are four kinds of properties defined in 
the JavaBean specification: 

Simple Properties
Indexed Properties
Bound Properties
Constrained Properties



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

As we saw for events, tools can introspect JavaBeans looking for methods that match a naming
convention to infer properties. Many JavaBean tools will display the properties in some sort of a
"property sheet" that allows a developer to view and modify the properties at design time.

This code snippet shows a fragment of a Bean class that defines three methods. The combination of the
"getAddress" and "setAddress" methods implies a property named "address", while the existence of the
"getSerialNumber" method implies a read-only property named "serialNumber".

Note that property names always begin with a lower-case character even though the method names
include an upper-case character.

Also note that there's a special case for properties of type boolean: the "getter" method should be
prefixed with "is" rather than "get", for example, "isHonorRoll()".

Simple Properties

2 - 20

A property is defined by the existence of "getter" 
and "setter" methods
Note that the property name is case sensitive!
A readonly property defines only a "getter" 
method

1    public String getAddress() {...}
2    public void setAddress ( String s ) {...}
3    public int getSerialNumber () {...}

Property Name    Property Type
-------------    -------------

address          String
serialNumber     int



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we show an example JavaBean that fires the FlunkedOut event based on the GPA value, invoked
the method shown a couple of pages ago.

We will cover bound properties in a moment, but note that this code only fires the event if the GPA is
less than 1.0, while a bound property fires an event on any change to the property.

Firing an Event Based on Property Change

2 - 21

It's common for a JavaBean to fire an event 
based on the value of a property change
This is similar, but a bit different than a bound 
property which fires an event regardless of the 
property value

1    public void setGpa(double gpa)
2    {
3       this.gpa = gpa;
4    
5       if (gpa < 1.0)
6         fireFlunkedOutEvent ("Java 101");
7    }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Indexed properties are somewhat rarely used, but can be convenient. Here we show an indexed
property named "degree" of type String. Note how the getter and setter methods accept the index.

In this example, we implemented the indexed property using an array, but that's not required (we
could've used a collection class such as ArrayList instead). The important thing is that the get/set
methods follow the naming pattern.

Also note that you can optionally provide methods that get/set the entire array, for example, String[]
getDegrees().

Indexed Properties

2 - 22

Indexed properties are like simple properties 
accessed as an array

1    private String[] degrees = new String[4];
2    
3    public String getDegree(int index)
4    {
5        return degrees[index];
6    }   
7    public void setDegree(int index, String degree)
8    {
9        degrees[index] = degree;
10   }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

A bound property fires an even whenever the property changes. This is especially handy in GUI
applications where you want a segment of the user interface to change when some other segment
changes. For example, consider a pair of list boxes, one of which shows a list of managers, while the
other shows the list of subordinates of the currently selected manager.

If a given JavaBean has multiple bound properties, it fires the same event whenever any property
changes -- note that the PropertyChangeEvent object includes the property name -- that allows
listeners to determine which property changed.

Also note that the PropertyChangeEvent object includes the previous property value -- that helps
listeners to decide whether or not to take action based on the change.

Bound Properties

2 - 23

A bound property fires the predefined 
PropertyChange event when the property changes 
to notify interested listeners
The PropertyChangeEvent object encapsulates the 
property name and the previous and new values of 
the property
The java.beans.PropertyChangeSupport class makes 
implementing bound properties easy



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we show a Student JavaBean that provides a bound property named "major". Whenever the
major changes, the bean fires the PropertyChange event.

Note that the code is fairly trivial since the java.beans.PropertyChangeSupport class does most of the
work!

Implementing a Bound Property

2 - 24

1    public class Student implements Serializable
2    {
3        private String major;
4        . . .
5        private PropertyChangeSupport changes 
6           = new PropertyChangeSupport(this);
7            
8        public void setMajor(String major)
9        {
10           String priorMajor = this.major;
11           this.major = major;
12           changes.firePropertyChange("major", 
13               priorMajor, major);
14       }   	
15       public String getMajor()
16       {
17           return this.major;
18       }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Completing the implementation of the bound property, here we show the methods that allow listeners to
register and de-register for the property-change event.

Implementing a Bound Property, cont'd

2 - 25

19   public void addPropertyChangeListener(
20          PropertyChangeListener l)
21       {
22           changes.addPropertyChangeListener(l);
23       }
24       
25       public void removePropertyChangeListener(
26          PropertyChangeListener l)
27       {
28           changes.removePropertyChangeListener(l);
29       }
30   . . .
31   }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we show a class that implements the PropertyChangeListener interface, registers and object and
then simply prints the property name, old value and new value.

Listening to a Bound Property

2 - 26

1    public class RespondToMajorChange 
2        implements PropertyChangeListener
3    {
4        public void propertyChange(PropertyChangeEvent evt)
5        {
6            System.out.println("Property name: " 
7                    + evt.getPropertyName());
8            System.out.println("Old value: " 
9                    + evt.getOldValue());
10           System.out.println("New value: " 
11                   + evt.getNewValue());
12       }
13       public static void main(String[] args)
14       {
15           RespondToMajorChange me = 
16              new RespondToMajorChange();
17           Student s = new Student();
18           s.addPropertyChangeListener(me);
19           s.setMajor("Computer Science");
20       }
21   }



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Advanced JavaBean Techniques

2 - 27

Constrained properties are like bound properties, 
but any listener can veto the change
You can override or supplement the standard 
reflection and introspection of a JavaBean by 
providing a BeanInfo class
Providing customized GUIs and property editors 
for tools that manipulate JavaBeans
Providing a customized, serialized instance of a 
JavaBean



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Review Questions

2 - 28

What differentiates a JavaBean from a normal Java 
class?
What differentiates a JavaBean from an Enterprise 
JavaBean?
What are the three kinds of features that a 
JavaBean can expose?



Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Chapter Summary

2 - 29

In this chapter you learned: 

Why JavaBeans are useful and sample 
applications of JavaBeans
About the three JavaBean features: events, 
methods and properties 


