
Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Inner classes let you scope a class definition to within another class.

Inner classes were introduced to Java in Version 1.1.

When you compile a class with inner classes, the compiler generates separate class files for
the enclosing and inner classes. The naming convention for the inner-class file names is
EnclosingClass$MyInnerClass.class (there is a special case for file names of anonymous inner
classes).

1 public class EnclosingClass
2 {
3 public class MyInnerClass
4 {
5 . . .
6 }
7 . . .
8 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

These category names are widely used and descriptive, but are not actually defined in the Java
documentation.

Inner Classes

Member
Inner

Classes

Local
Inner

Classes

Named
Local
Inner

Classes

Anonymous
Local
Inner

Classes

Static
Member

Inner
Classes

Non-Static
Member

Inner
Classes

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Used properly, inner classes can simplify designs and make code more readable and
maintainable. The syntax can be a bit intimidating until you get used to it, however.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we show defining a static member inner class that itself defines a private field and a
public method. Within the inner class, you are free to use any of the class definition techniques
available to a non-inner class.

Since the inner class is defined as public, it is accessible from outside of the enclosing class. If
we had defined it as private, then it would only be visible within the enclosing class.

1 public class MyEnclosingClass
2 {
3 . . .
4 static public class InnerClass3
5 {
6 private int y = 14;
7
8 public void myMethod()
9 {
10 System.out.println(y);
11 }
12 }
13 . . .
14 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The inner class can access private members of the enclosing class. That makes sense if you
consider that the inner class is itself considered a member of the enclosing class.

Note the odd syntax that's required if the inner class defines a field with the same name as a
field in the enclosing class.

1 public class MyEnclosingClass
2 {
3 private int x = 12;
4 static private int y = 20;
5 static private int z = 21;
6
7 static public class InnerClass3
8 {
9 private int y = 14;
10
11 public void myMethod()
12 {
13 System.out.println(y);
14 System.out.println(z);
15 System.out.println(MyEnclosingClass.y);
16 }
17 }
18 . . .
19 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The syntax to instantiate a static member inner class object from outside of the class is a bit
weird, but is consistent with the syntax for accessing any kind of static member.

Note that in either case, since the inner class is static, you don't have to first create an
instance of the enclosing class. We will see that with non-static member classes, you will need
to first create an enclosing class object.

Inside enclosing class

Outside of the enclosing class

InnerClass3 m3 = new InnerClass3();

MyEnclosingClass.InnerClass3 m3 =
 new MyEnclosingClass.InnerClass3();

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Non-static member inner classes are syntactically similar to static -- just omit the static
keyword. You instantiate objects and access them a bit differently, however.

1 public class MyEnclosingClass
2 {
3 . . .
4 public class InnerClass2
5 {
6 private int x = 14;
7
8 public void myMethod()
9 {
10 System.out.println(x);
11 }
12 }
13 . . .
14 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Non-static member inner classes can access any of the enclosing class's members, be they
private or not, static or not.

Note the odd syntax required if an inner class defines a field with the same name as field from
the enclosing class. The implication is that within an inner class, there are actually two "this"
references -- the "this" for the inner class itself and the "this" for the enclosing class.

1 public class MyEnclosingClass
2 {
3 private int x = 12;
4
5 public class InnerClass3
6 {
7 private int x = 14;
8 private static int y = 17;
9
10 public void myMethod()
11 {
12 System.out.println(x);
13 System.out.println(y);
14 System.out.println(MyEnclosingClass.this.x);
15 }
16 }
17 . . .
18 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Non-static member inner classes are considered to part of an enclosing class INSTANCE, not of
the enclosing class itself (static inner classes ARE considered part of the enclosing class).
Therefore, the enclosing class instance must first exist before you can create an instance of
the inner class.

Again, the syntax is different depending on where you are trying to instantiate the inner class
object. From within an enclosing-class, non-static method, there's an implicit "this" for the
enclosing class, so you can use the normal "new" syntax. From anywhere else, you need to use
the rather odd "new" syntax that uses the dot operator following the reference to the enclosing
class instance.

Inside enclosing class non-static method

Outside of an enclosing class non-static method

InnerClass2 m2 = new InnerClass2();

MyEnclosingClass m = new MyEnclosingClass();
MyEnclosingClass.InnerClass2 m2 =
 m.new InnerClass2();

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The key difference between local inner classes and the two categories we've already covered is
that local inner classes reside within a method, rather than being a member of the enclosing
class itself.

Inner Classes

Member
Inner

Classes

Local
Inner

Classes

Named
Local
Inner

Classes

Anonymous
Local
Inner

Classes

Static
Member

Inner
Classes

Non-Static
Member

Inner
Classes

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Named local inner classes reside within a method and are considered part of the method. They
are useful if you need a one-off class just for use by a single method.

Note that you cannot use "public" or "private" modifiers on the inner class definition, since such
modifiers are only allowed on members defined at class scope.

1 public class MyEnclosingClass
2 {
3 public void anotherMethod()
4 {
5 class Inner4
6 {
7 private int x = 17;
8
9 public void myMethod()
10 {
11 System.out.println(x);
12 }
13 }
14 }
15 . . .
16 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Named local inner classes have basically the same access to fields as do non-static member
inner classes, but there's a twist: local inner classes can also access local variables defined in
the method in which they reside. Caveat: The local variables must use the final modifier, which
means they are constant, and greatly reduces the usefulness of this technique.

1 public class MyEnclosingClass
2 {
3 . . .
4 public void anotherMethod()
5 {
6 int z = 44;
7 final int q = 32;
8 class Inner4
9 {
10 private int x = 17;
11 public void myMethod()
12 {
13 System.out.println(x);
14 System.out.println(q);
15 System.out.println(MyEnclosingClass.this.x);
16 }
17 }
18 . . .
19 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Since local inner classes are only visible from within the method that encloses them, you
instantiate and use objects typed to the inner class within the enclosing method.

1 public class MyEnclosingClass
2 {
3 . . .
4 public void anotherMethod()
5 {
6 class Inner4
7 {
8 public void myMethod()
9 {
10 . . .
11 }
12 }
13
14 Inner4 m5 = new Inner4();
15 m5.myMethod();
16 }
17 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Anonymous inner classes might seem a bit weird at first -- how can you define a class without
naming it? But they are quite useful, especially in GUI applications. You do have to get used to
the syntax, however.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

For anonymous inner classes, you define the class and instantiate an object all in one step.

Note that we defined the inner class within a call to System.out.println -- it's a common
scenario to define anonymous classes within method calls, especially registration calls for
JavaBean events.

In this case, we subclassed Object and override toString() -- remember that System.out.println()
automatically calls toString() on any object references passed.

Anonymous inner classes have the same access to enclosing class members and final local
variables as do named local inner classes.

1 public class MyEnclosingClass
2 {
3 public void anotherMethod2()
4 {
5 System.out.println (new Object()
6 {
7 private int x = 17;
8 public String toString()
9 {
10 return "Inner x: " + x +
11 " Enclosing x: " + MyEnclosingClass.this.x;
12 }
13 });
14 }
15 . . .
16 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

In this case, we defined an anonymous inner class that subclasses Object and implements the
java.io.Serializable interface (which is a tagging interface with no methods).

It does look odd to use the "new" operator on an interface!

1 public class MyEnclosingClass
2 {
3 public void anotherMethod3()
4 {
5 System.out.println (new java.io.Serializable()
6 {
7 public String toString()
8 {
9 return "Hello";
10 }
11 });
12 }
13 . . .
14 }

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

