
Lab 2: JSF Architecture

In this lab, you will write a simple JSF application to learn the basic architecture of the framework.

The application will be for a fictional developer's conference with an online registration system. The application
will let the user search for their registration information by supplying the confirmation number.

Objectives:

• To write a complete JSF application
• To understand the fundamentals of the framework

Part 1: Getting Started

Steps:

_1. Your first job is to create a project for the lab. Follow this procedure:

a. From the Eclipse menu, choose File - New - Dynamic Web Project to start the wizard.

b. On the first wizard page, for the Project name, enter lab02Web.

Put a checkmark in the Add project to an EAR box, then for the EAR project name, enter
lab02EAR.

Press Finish. You should see the new projects in the Project Explorer.

c. In the Project Explorer, right-click on the lab02Web project and choose Properties.

d. In the left-hand category list, click on Project Facets.

Then find the entry for JavaServer Faces and look to its right side and click the down-arrow icon to
set the version to 1.2.

Then put a checkmark next to JavaServer Faces, but don't close the Properties dialog yet.

e. At the bottom of the dialog, there should be a link: Further configuration available.

Click the link to bring up the JSF Capabilities dialog.

In the URL Mapping Patterns, select the existing entry to highlight it, then press the Remove button.

Press the Add button and add a pattern of *.faces.

Press OK to return to the Project Facets dialog.

Press Apply followed by OK.

_2. Next, create a RegistrationBean class that stores information about a conference registration. Instances of
this class don't need to be named managed beans, so you will create the class in a slightly different
fashion than before:

a. In the lab02Web project, expand the Java Resources folder, then right-click on the src folder and
choose New - Class to start the wizard.

b. On the first page, for the Package, enter conference.

For the Name, enter RegistrationBean, then press Finish.

Eclipse creates the class and opens it into the Java editor.

Lab 2 - 1
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



c. Define the following fields:

private int confirmationNumber;
private String name;
private int attendees;

Use Source - Generate Getters and Setters to create get/set methods for all of the fields.

d. Write a read-only property that returns the total amount due:

public double getAmountDue()
{

return attendees * 2000;
}

Save and close the file.

_3. In a real-world conference-registration application, we would store the registration list in a database, but
to keep things simple, this application will simply store a registration list in memory.

Java Enterprise Edition Web applications can use application scope to store items such as the registration
list -- application scope is shared amongst the entire Web application.

In this step, you will write a standard JEE Web application context listener class that the JEE container
calls when the Web application starts. In your listener, you will create a list of Registration beans and
store the list at application scope. Follow this procedure:

a. Right-click on the Java Resources/src folder and choose New - Class to start the wizard.

For the Package, enter listeners. For the Name, enter MyContextListener.

For the Interfaces, press the Add button and start typing ServletCont and then select
ServletContextListener - javax.servlet and press OK. Press Finish to complete the wizard.

b. Note that the wizard generated a class that implements ServletContextListener and also wrote empty
methods for the two interface methods.

Complete the contextInitialized method:

ServletContext ctx = arg0.getServletContext();

Vector<RegistrationBean> reglist =
new Vector<RegistrationBean>();

RegistrationBean rb = new RegistrationBean();
rb.setAttendees(3);
rb.setConfirmationNumber(44);
rb.setName("Paul Westerberg");
reglist.add(rb);
rb = new RegistrationBean();
rb.setAttendees(12);
rb.setConfirmationNumber(644);
rb.setName("Patti Smith");
reglist.add(rb);

ctx.setAttribute("reglist", reglist);

Lab 2 - 2
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



This code creates a couple of Registration beans, adds them to a list, and then stores the list
reference at application scope using the name reglist - other parts of your application can access the
list using that name.

Note: Use the Source - Organize Imports menu to import needed types.

Save and close the file.

_4. Next, you will write a managed bean class that has logic to search the registration list. Follow these steps
to create the class:

a. In the lab02Web project, expand the WebContent/WEB-INF folder, then double-click on
faces-config.xml to open it into the Faces Configuration editor.

b. At the bottom of the editor pane, click the ManagedBean tab.

c. In the list, click on session to ensure it's highlighted, then press the Add button to start the wizard.

d. On the first wizard page, select the Create a new Java class button, then press Next.

e. On the next page, for the Package, enter service.

For the Name, enter ProcessRegistrationsBean, then press Next.

f. On the next page, for the Name, enter processreg, then press Finish.

g. At the bottom of the editor window, click the Source tab and note the XML to define the managed
bean.

Save the faces-config.xml file.

_5. Complete the managed bean:

a. In the Project Explorer, expand the Java Resources/src/service entry - you should see
ProcessRegistrationsBean.java. Double-click on it to bring it into the editor.

b. Define a field in the new class for the confirmation number that the user will enter to search for a
registration:

private int confirmationNumber;

c. Write another field in which you will store a reference to the "found" registration:

private RegistrationBean registration;

d. Generate get/set methods for the fields and use Source - Organize Imports so Eclipse writes the
required import statements.

e. Write a searching method:

Lab 2 - 3
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



public String findByConfirmationNumber()
{

String returnStr = "not-found";

ExternalContext context =
FacesContext.getCurrentInstance().getExternalContext();

Map appMap = context.getApplicationMap();
Vector<RegistrationBean> reglist =

(Vector<RegistrationBean>)appMap.get("reglist");

for (RegistrationBean rb : reglist)
{

if (rb.getConfirmationNumber() == confirmationNumber)
{

registration = rb;
returnStr = "found";
break;

}
}
return returnStr;

}

This code first retrieves a reference to a Map that represents application scope, then searches the
registration list for the specified registration. Note that JSF will call the setConfirmationNumber
method with the confirmation number that the user enters into the HTML input form you will write
in a moment.

f. Use Source - Organize Imports, then save and close the file.

_6. Now it's time to write a JSP that will let the user enter a confirmation number for which to search. Follow
this procedure:

a. Right-click on the WebContent folder and choose New - JSP to create FindRegistration.jsp using
the JavaServer Faces (html) template.

b. At the top of the source, note the taglib directives to use the JSF tags:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

Also note that the wizard generate the f:view element required by JSF pages.

c. Change the page's title to Find Registration.

d. In the view, define an <h:form> element.

e. In the form, define an HTML paragraph, and inside the paragraph, an <h:inputText> element into
which the user can enter a confirmation number:

Lab 2 - 4
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



<p>
<h:outputLabel for="confirmnum"

value="Enter confirmation number: " />
<h:inputText id="confirmnum"

value="#{processreg.confirmationNumber}"/>
</p>

Note that the JSF EL expression references the managed bean you wrote and configured in earlier
steps.

f. Define another HTML paragraph, and in it, an <h:commandButton> that will act as the "submit"
button for the form:

<p>
<h:commandButton value="Find"
action="#{processreg.findByConfirmationNumber}"/>

</p>

Note how the JSF expression references the findByConfirmationNumber method you wrote in the
ProcessRegistrationList managed bean class.

Save and close the file.

_7. Next, create another JSP named DisplayRegistration.jsp that will display the "found" registration.

Within the f:view element, use the <h:outputText> component to display the four RegistrationBean
properties: name, confirmationNumber, attendees and amountDue. Here's an example to help you get
started:

<p>
<h:outputText

value="Name: #{processreg.registration.name}"/>
</p>

Note how we can use the JSF expression language to access nested properties.

Note: Be sure to copy the above code to display ALL of the RegistrationBean properties, each within
their own paragraph.

_8. Next, create another JSP named NotFound.jsp that simply displays an HTML message that the
registration wasn't found.

_9. Next, define the navigation rules for your application:

a. Open faces-config.xml into the editor.

b. At the bottom of the editor, press the Navigation Rule tab.

c. Show the Palette view by choosing from the Eclipse menu Window - Show View - Other - General -
Palette.

d. In the Palette, click the Page icon, then click somewhere on the left side of the gridded
faces-config.xml window.

Expand the lab02Web/WebContent folder, select FindRegistration.jsp, then press OK.

Eclipse draws a icon representing the FindRegistration.jsp page.

Lab 2 - 5
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



e. Repeat the above step to create an icon for DisplayRegistration.jsp, placing the icon to the right and
above FindRegistration.jsp.

f. Repeat the above step to create an icon for NotFound.jsp, placing the icon to the right and below
FindRegistration.jsp.

g. In the Palette, click on the Link icon, then drag a line from FindRegistration.jsp to
DisplayRegistration.jsp, clicking on DisplayRegistration.jsp to complete the line. Eclipse draws an
arrowed line from FindRegistration.jsp to DisplayRegistration.jsp.

In the Palette, click on the Select icon, then click on the arrowed line.

At the bottom of the editor, click the Properties tab (choose Window - Show View - Properties if
you don't see it). In the Properties tab, for the From Outcome, enter found - Eclipse labels the
arrowed line.

Warning: Be sure to enter "found" into the From Outcome field, NOT the From Action field.

h. Repeat the above step to create a navigation rule from FindRegistration.jsp to NotFound.jsp,
labeling it not-found.

After completing this step, your screen should look something like Figure 1:

Figure 1: Configuring Navigation Rules

i. In the faces-config.xml editor, click the Source tab and examine the navigation rules. They should
look like:

Lab 2 - 6
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



<navigation-rule>
<display-name>FindRegistration</display-name>
<from-view-id>/FindRegistration.jsp</from-view-id>
<navigation-case>

<from-outcome>found</from-outcome>
<to-view-id>/DisplayRegistration.jsp</to-view-id>

</navigation-case>
</navigation-rule>
<navigation-rule>

<display-name>FindRegistration</display-name>
<from-view-id>/FindRegistration.jsp</from-view-id>
<navigation-case>

<from-outcome>not-found</from-outcome>
<to-view-id>/NotFound.jsp</to-view-id>

</navigation-case>
</navigation-rule>

Save and close the file.

_10. Configure your servlet context listener and welcome file in the WEB-INF/web.xml deployment descriptor:

a. Open the deployment descriptor into the editor and then press the Source tab at the bottom of the
window.

b. Delete entries from the welcome-file-list element so that the only entry is index.jsp.

c. After the close tag for the servlet-mapping element, configure your context listener:

<listener>
<listener-class>
listeners.MyContextListener

</listener-class>
</listener>

d. Save and close the deployment descriptor editor.

_11. In the Project Explorer, right-click on the WebContent folder and choose New - JSP to start the wizard to
create a "welcome" file for your application:

a. On the first wizard page, for the File name, enter index.jsp, then press Next.

b. On the next wizard page, uncheck the Use JSP Template box, then press Finish.

Eclipse opens the empty JSP into the editor.

c. Add the following, which should be the only thing in the JSP:

<jsp:forward page="/FindRegistration.faces"/>

Since index.jsp is the "welcome file", when you run the application, this JSP will forward to the
actual starting page of the application, which has a URL of FindRegistration.faces. JSF requires that
all requests from the client use the URL pattern that you configure in web.xml.

_12. Now you can run your program. In the Project Explorer, right-click on the lab02Web project and choose

Lab 2 - 7
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



Run As - Run on Server.

Eclipse deploys your application, starts the server and should display your FindRegistration JSP. Enter 44
and press the Submit button with the mouse (pressing Enter doesn't work). You should see the registration
that your ContextListener initialized.

Hit the "back" button and try searching for 45 -- you should see your NotFound.jsp.

Hit the "back" button and try searching for abc -- what happens? Look in the Eclipse Console pane for an
explanation. We will cover validation later.

Part 2: Preventing Direct JSP Access

In this part, you will continue working on the FindRegistration application. JSF requires all access to pages to
go through the Faces servlet, using the mapping defined in the web.xml deployment descriptor. In your
application, that mapping is URLs that end in *.faces.

The problem is that a user may inadvertantly (or on purpose) enter a URL that ends in .jsp, which will cause
your application to fail if the URL corresponds to an actual JSP. In this part, you will prevent users from
directly accessing the JSPs of your pages.

Steps:

_1. Ensure that the application is working, then in the browser's URL field, enter:

http://localhost:7001/lab02Web/FindRegistration.jsp

This is an attempt to directly access the JSP without going through the Faces servlet. Note that you get an
an ugly error page indicating that the FacesContext is not found - that context is supposed to be created by
the Faces servlet before it invokes the JSP. Users will likely be dumbfounded by this screen and blame the
application rather than thinking they themselves did something wrong.

_2. To prevent the user from directly accessing the JSP, you will write a security constraint:

a. Open web.xml into the editor.

b. After the close tag for the listener element, configure a security constraint that prevents client
access to the raw JSPs:

<security-constraint>
<web-resource-collection>

<web-resource-name>Hide JSPs</web-resource-name>
<url-pattern>/FindRegistration.jsp</url-pattern>
<url-pattern>/DisplayRegistration.jsp</url-pattern>
<url-pattern>/NotFound.jsp</url-pattern>

</web-resource-collection>
<auth-constraint>

<description>
Since we define no roles, no direct access
from the client

</description>
</auth-constraint>

</security-constraint>

c. Save the file.

Lab 2 - 8
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



_3. In the Servers tab, right-click on the server and choose Publish - this ensures that the server is updated
with the changes you made to the deployment descriptor.

_4. Go back to the browser window and refresh the page? What happens now?

Note that the user still sees an ugly error page of Error 403: Forbidden, but at least this way, the
application is protected against direct access and perhaps the user will realize they did something wrong.

Lab 2 - 9
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



Lab 2 - 10
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.


