
Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

JavaBeans and JSPs

6 - 1

Calling a JavaBean from a 
JSP
Architecture and Design



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Remember that JSPs are designed to be written and maintained by non-programmers -- if you have too
much scriptlet code, you lose this advantage. In fact, the ideal JSP has exactly zero lines of scriptlet code
-- you can use the techniques in this chapter to approach this ideal.

We will cover custom actions in more detail in a later chapter.

Separating Content from Presentation

6 - 2

If you are not careful, you can end up with JSPs 
that are "cluttered" with too much code in 
scriptlets, obscuring the templated text
That makes pages hard to understand and 
maintain -- in addition, if the business logic is 
in the JSP itself, you need to update the JSP if 
the logic changes
A better design is to move the bulk of the 
application's data and logic to an external 
entity: JavaBeans, EJBs or custom actions



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

To reduce code bulk in your JSPs, you can separate out the business logic and data into external
JavaBeans. This will map nicely to the MVC architecture that we will cover in detail later.

The Model-View-Controller Architecture

6 - 3

Servlet
(Controller)

JSP

(View)

JavaBeans
(Model)

HTTP
request

HTML
response

Create and
initialize

Redirect
or

forward
database

One very useful pattern you can use to combine 
servlets and JSPs is referred to as MVC
Until we cover MVC in detail, keep this in mind 
as we cover JSP fundamentals



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Sun invented the JavaBean specification originally so programmers could use visual design tools to
layout Java graphical user interfaces. However, the notion of Beans has proven to be more widely
applicable than just GUIs. Beans are nicely packaged units of business logic and data.

What is a JavaBean?

6 - 4

Composition Editor

Enter student name:

theStudent
Submit

A JavaBean is a Java class that is designed to be 
manipulated by tools
Sun created JavaBeans mainly to act as GUI 
widgets, but has always supported the notion of 
"invisible" beans



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Using JavaBeans with JSPs

6 - 5

JVM

HTTP

JSP Container

Browser

Submit

JavaBeans run within the same Java Virtual 
Machine (JVM) as the JSP's generated servlet
The JSP specification provides special syntax to 
make it easier for non-programmers to create 
and access JavaBeans



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The EJB specification is an integral part of J2EE and allows for components that execute remotely. We
will not cover EJBs in this class, but you should be aware that it's very possible to design web
applications that include JSPs, servlets and EJBs. Such designs are complex but scalable, since they let
you separate the business logic onto remote servers. In addition, since the EJB container provides
powerful services, applications that use EJBs can have truly enterprise-class robustness.

JavaBeans vs Enterprise JavaBeans

6 - 6

JVM JVM
HTTP

JSP Container EJB Container

Browser

Submit

Enterprise JavaBeans implement specific 
interfaces so that they can be installed into a 
container running on a server computer
EJBs are designed to be accessed remotely
EJB containers provide advanced services such 
as transactions, security and persistence



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This page lists some of the conventions you should follow so your JavaBeans are accessible from JSPs.
We will see a complete example in a few pages.

JavaBean Requirements

6 - 7

A JavaBean is a Java class that follows a few 
simple conventions
To be a proper JavaBean, a Java class should: 

Implement the Serializable interface
Be in a named package
Expose properties, methods and events as 
necessary
Define a no-argument constructor
Optionally packaged into a JAR file



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The JavaBean specification provides precise definitions of how to code a JavaBean that provides these
three kinds of features. For JSPs, you really only need to worry about properties and methods, especially
properties.

JavaBean Features

6 - 8

A JavaBean can expose three kinds of features: 
Properties , which are defined using get/set 
methods
Methods , which expose behavior
Events , which let the Bean call back to the 
outside world

Most Beans used by JSPs do not define events



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The JSP container uses reflection and introspection to determine a Bean's features and thus check that
the JSP author accesses the features correctly.

What are Reflection and Introspection?

6 - 9

The Java API includes a technique known as 
reflection that lets a program enumerate the 
public features of any Java class
If the Java class follows some simple naming 
conventions, the examining program can make 
assumptions about the class using a process 
referred to as introspection
For example, if a JavaBean has a two public 
methods, one named getAddress and one named 
setAddress, we can infer that the Bean defines a 
property named address



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This code snippet shows a fragment of a Bean class that defines three methods. The combination of the
"getAddress" and "setAddress" methods forms a property named "address", while the existence of the
"getSerialNumber" method implies a readonly property named "serialNumber".

Note that property names always begin with a lower-case character.

What is a Property?

6 - 10

A property is defined by the existence of "getter" 
and "setter" methods
Note that the property name is case sensitive!
A readonly property defines only a "getter" 
method



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Here we show a method (behavior) from a Student JavaBean that implements a bit of business logic (a
student must have a GPA above 3.5 to be on the honor roll). Note that the method must be public to be
accessible from the JSP.

Later in the course, we will cover custom actions, which can be alternative to Beans that have a lot of
business logic. Custom actions should be easier for non-programmers to work with.

What is a JavaBean Method?

6 - 11

A JavaBean method is simply a public method 
in the class that comprises the JavaBean



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Here we show part of a simple JavaBean that represents a student. Line 1 defines the named package
in which the class resides. In line 7, the class implements the Serializable interface, which has no
methods but indicates that the object's data could be converted to a stream and saved in a file or
transmitted to another JVM.

Lines 9 to 11 define variables to hold the Bean's properties. It's important to note that these are not the
properties -- recall that properties are implemented by get/set methods. We will see those on the next
page.

A Sample JavaBean

6 - 12



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Continuing the JavaBean listing, here we show the read-only "serialNumber" property and the "name"
property. Note how these get/set methods are trivial -- they simply read or write the instance variables
shown on the last page.

A Sample JavaBean, cont'd

6 - 13



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Next we show this Bean's "gpa" property.

A Sample JavaBean, cont'd

6 - 14



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Finally, this simple Bean defines a single behavior -- the "isHonorRoll" method that returns true if the
student represented by the Bean has a high enough grade-point average.

A Sample JavaBean, cont'd

6 - 15



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Now that you know how to write a Bean, let's turn our attention on how to write a JSP that uses the
Bean.

Those of you taking the class that are Java programmers know that to access any Java object, you must
first call the "new" operator to instantiate the object and then call the object's methods. To understand
that process, you first need to learn quite a few fundamental Java concepts such as references, garbage
collection and the like. Fortunately, non-programmers writing JSPs can avoid that learning curve by
using the special syntax that we will cover next.

Using a JavaBean from a JSP

6 - 16

To use a JavaBean from a JSP, you must obtain 
a reference to the Bean and then typically 
access its properties and call its methods
The JSP specification provides special syntax 
for these operations



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Instantiation is the process of creating an object and retrieving a reference to the new object. In a web
application, you can store the reference in some of the predefined implicit objects covered earlier in the
course. By choosing the scope (i.e. which implicit object), you can control how widely the reference is
available.

For example, if you store the reference at "page" scope, only the JSP that created the Bean can access
it, but if you store the reference at "application" scope, any JSP or servlet that's in the same web
application could retrieve the reference and access the Bean.

In a model-view-controller (MVC) web application, the controller often stores Bean references at request
or session scope so that the JSPs that comprise the view can display them.

Bean Scopes

6 - 17

When a bean is instantiated, you can store its 
reference using the following scopes to 
provide differing visibility to the reference
Scope values: 

page (default)
request
session
application

We will revisit the notion of scope when we 
cover sessions and MVC later in the course



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Here we show a fragment of a JSP that accesses a Bean of the class we saw earlier. In line 1, the JSP
invokes the jsp:useBean action, specifying an "id" and a "class" (here we are using the default "page"
scope). The JSP could then access the Bean's properties and methods.

Here's a place where it's illuminating to examine the generated servlet -- to implement useBean, the
translator creates a Java variable using the "id" as the variable's name, and initializes the variable either
by calling the "new" operator or by retrieving a reference from an implicit object (e.g. the session).

Referencing a Bean

6 - 18

The jsp:useBean action element assigns a Bean 
reference to the variable specified by the id 
attribute
If the Bean does not exist at the specified 
scope, useBean will instantiate it, otherwise it 
will return a reference to the existing Bean



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This syntax diagram from the JSP specification shows the complete syntax for the useBean action
element. Note that the 'id" attribute is required, but there are various allowed combinations of "class",
"type" and "beanName" attributes. If you use "class", you specify a Java class name. If you use "type",
you can specify either a Java class or interface. If you use "beanName", then the container will attempt
to reconstitute a JavaBean from a serialized file (see the "java.beans.Beans.instantiate method for
details).

In this course, we will concentrate on the syntax that uses the "class" attribute, since it's the normal way
to create a new Bean.

The useBean Action Syntax

6 - 19



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This chart shows a simplified flowchart for how the container processes useBean (for brevity, the chart
omits processing for "type" and "beanName" attributes). The key point here is that the useBean action
first searches for an existing Bean and only instantiates a new one if the container can't find an existing
Bean at the specified scope.

Note that exceptions can occur -- for example, if the Bean doesn't have a no-argument constructor, the
"create object" step will throw an InstantiationException. Another exception could occur during casting if
the found object's actual type is incompatible with the specified "class" attribute.

Finally, make special note that if the container finds an existing Bean, it does not process any body of
the useBean action element. More on this in a moment.

The useBean Action Flowchart

6 - 20

Is there an object 
reference with specified 
ID at specified scope?

Define a variable with 
name=ID and attempt 

to initialize it by casting 
reference to specified class.

Successful cast?

Process body
of jsp:useBean.

Processing completed

Processing
completed

Instantiate a bean using
no-argument constructor
and initialize a variable

with name=ID. Then store 
the reference using the ID

at the specified scope.
Success?

Throw exception.
Processing completed

Throw exception.
Processing completed

yes

yes

no

no

no

yes



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Remember that Beans can define properties, which are implemented as get/set methods. Instead of
writing a scriptlet and calling the "set" method, a JSP author can instead use the setProperty action
element. This helps reduce the number of lines of Java code in the JSP, which is a good thing. It also
obviates the need for the JSP author to understand the notion of references and Java types.

Here we show getting a reference to a student Bean in lines 1 and 2, then setting the Beans "gpa"
property in lines 4 to 6. Note that property name is lower case! Also note that even though the Bean
defined the "gpa" property as a "double", the JSP author simply provides a value as a quoted attribute.
We will see the rules for conversion later, but the idea is that the JSP author just uses intuitive values
for the properties.

In MVC-architected applications, JSPs don't often set properties, since that task is handled by servlets.

Setting Properties

6 - 21

The jsp:setProperty action element assigns the 
specified value to the the specified property 
(calls the "setter" method)
The container converts to the property's type 
from String as described later



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This page leads into the next page, which shows a special syntax for the setProperty action. Here we
show a normal HTML form that references a JSP. In lines 3, 5 and 7, we define input widgets -- note
that the widget names exactly match Bean property names.

Setting Properties from the Request

6 - 22

If the JSP is invoked from an HTTP request with 
parameters (e.g. an HTML form), you can use a 
shorthand notation in the JSP
This only works if the parameter names are 
exactly the same as the Bean's property names



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This trick can reduce the number of lines in the JSP, but it requires communication between the JSP
author and the HTML author (if they are not the same person). Note that parameter names are
case-sensitive!

If there is no parameter name that matches a property name, the container does not change the
property.

Setting Properties from the Request, cont'd

6 - 23

When you use the "*" syntax, the container 
iterates throughout the parameter names (in 
the request implicit variable) and matches 
them to the Bean's property names



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Lines 4 to 6 show retrieving a student Bean's "gpa" property and sending it to the output HTML along
with a hard-code label.

In an MVC-architected web application, retrieving properties for display is one of the main jobs of JSPs,
so JSP authors should become quite familiar with the getProperty syntax.

Retrieving Properties

6 - 24

The jsp:getProperty action element retrieves the 
specified property (calls the "getter" method) and 
converts it to a String 



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This table shows the standard Java methods that the container calls to convert the value specified in a
setProperty action to a Bean's property type. Please refer to the API documentation for these calls for
details on how the conversion take place (for example, the allowable formats for floating-point values).
All of these classes are in the java.lang package.

Note that the opposite conversion takes place when the container fetches a property from a Bean -- the
container must convert the property to a String. See the "toString" method in each of the classes (e.g.
Double) for more information.

Property Type Conversion

6 - 25

boolean

byte

char

double

int

float

long

Boolean.valueOf (String)

Byte.valueOf (String)

Character.valueOf (String)

Double.valueOf (String)

Integer.valueOf (String)

Float.valueOf (String)

Long.valueOf (String)

Property Type Conversion API (from String)

In a JSP, all attributes are quoted strings, but in 
the Bean, properties can be any Java type
The container converts to/from String when the 
JSP accesses the property



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Here we show retrieving a bean reference in lines 1 and 2 and then writing a scriplet that calls a Bean
method. Note that scriptlets use the variable name as defined by the "id" attribute in the useBean
element.

In a well designed web application, you should avoid calling methods too much from JSPs, since it
requires the JSP author to know a bit about Java syntax, types and so forth. Perhaps a better way to
execute behaviors is to use custom action elements, which we will cover later in the course.

Calling Methods

6 - 26

To call a method in a JavaBean, simply issue a 
standard Java method call from within a 
scriptlet
Note that you could also use this technique to 
access properties, since properties are 
implemented as simple methods (not 
necessarily a good idea)



Copyright © Descriptor Systems, 2001, 2002. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Chapter Summary

6 - 27

In this chapter, you learned: 

The basics of JavaBeans
How to retrieve a Bean reference
How to access a Bean's properties 
and methods


