
Servlet Lab 4: Sessions

In this lab, you will write a web application for ordering pizza online. The application will have three "screens"
of information:

• A static HTML form, OrderForm.html, that lets the user choose the size of pizza they wish to order
• An HTML form generated by a PizzaOrder servlet that lets the user enter in their delivery address and

name
• An HTML page generated by an AddressInfo servlet that confirms the order

To maintain state between the three screens, your web application will use the servlet session API to store an
instance of a JavaBean that contains the order information. The PizzaOrder servlet will create the Bean instance,
update it with information about the order and then store the Bean instance in the session. This servlet will then
generate the HTML form that lets the user enter address information. The AddressInfo servlet will retrieve the
Bean instance and update it with the delivery information and then generate the final confirmation page. See
Figure 1:

Figure 1: Application Flow

Objectives:

• To write servlets that maintain state using the servlet session API

Servlet Lab 4 - 1
Copyright  Descriptor Systems 2003. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



Steps:

_1. Ask your instructor for the following information:

BEA Installation directory: ________________________________________

BEA Username and password: ________________________________________

Lab Installation directory: ________________________________________

If your machine has the standard lab setup, the directories will be something like:

BEA Installation directory: c:\java\bea
BEA Username and password: administrator
Servlet Deployment directory: c:\j2eeclass\DefaultWebApp\WEB-INF\classes
Lab Installation directory: c:\j2eeclass

_2. Start by examining the provided {Lab InstallationDirectory}/servlab04/OrderForm.html static HTML
file, which defines an HTML form that lets the user choose the size of pizza. Especially note the form's
action attribute and the name of the radio button group. Which servlet does the form invoke? Make sure
you understand the flow as described in Figure 1 above.

_3. Now examine the fully completed Order.java file in the order subdirectory. This JavaBean stores
information about a pizza order: the pizza size and delivery information (name and address). Note that the
application will initialize part of the order information from the PizzaOrder servlet and the rest from the
AddressInfo servlet. To maintain state between these two servlets, your application will use the servlet
session API.

_4. Next, examine the partially completed PizzaOrder.java file. The provided code creates an output stream
variable and then generates part of the required HTML. Please examine the provided code carefully so
you understand how it generates the next page in the web application. Refer back to Figure 1. Draw a
sketch of the resulting HTML page and write down the name of the input variables on a piece of paper.

_5. Complete the PizzaOrder servlet so that it accomplishes the following:

• Retrieves the string from the request that indicates the pizza size
• Creates an instance of the Order Bean using the no-argument constructor
• Sets the size property in the Order Bean
• Retrieves (creates) a reference to a Session object
• Stores the OrderBean reference as an attribute in the session. You can choose whatever attribute

name you want, but write it down for future reference.

_6. Now examine the AddressInfo.java file. This servlet responds to the address-information HTML form
that was generated by the PizzaOrder servlet. The AddressInfo servlet needs to complete the order
information by reading the customer's name and address and storing them in the Order object. But first, it
must retrieve the Order object reference from the session. Please examine the provided code carefully so
you understand how it generates the confirmation page. Draw a sketch of the resulting HTML. Then
complete the servlet so that it:

• Retrieves the name and address strings from the request
• Retrieves a reference to the Session object. Be sure to report an error if the session object does not

exist. For example, throw a ServletException.
• Retrieves the Order Bean reference from the session
• Sets the name and address properties in the Order bean

Servlet Lab 4 - 2
Copyright  Descriptor Systems 2003. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



_7. Your next task is to package your web application into a .war file and deploy it using Ant.

Examine the provided build.xml file and note how it defines three targets: a build target that compiles
your Java files, a makewar target that uses Ant's war task to create a .war file containing your files, and a
deploy target that cleans up any previous version of the web application and then copies the .war file to
the correct directory. Note also that the deploy target depends on the makewar target -- that means that
Ant will run makewar first. Likewise, the makewar target depends on the build target.

_8. To deploy using Ant, open a command prompt window (choose Run from the Start menu and enter "cmd"
with no quotes), change to the {Lab Installation directory}/servlab04 directory and then run Ant. For
example, assuming standard lab directories:

cd \j2eeclass\servlab04
ant -emacs

Ant will execute the commands in the build.xml file and report any error messages, which you must
correct before continuing. You can then use Windows Explorer to examine the WebLogc directories for
the files that Ant just copied for you.

_9. Test your application by starting your browser and entering the URL:

http://localhost:7001/servlab04

Then choose a pizza size and press Submit. Does the address-information page appear correctly? Enter a
name and address and press Submit. Does the confirmation page correctly display all of the order
information? If so, then your web application's use of sessions is working properly!

Optional:

Optional labs are for students that wish to explore topics further with minimal guidance from the lab write-up.

_1. Disable cookies in the browser and run the application again -- it should fail, since the container will not
be able to maintain state between requests. Then add code so that the URLs are encoded and retest. Note:
when you test, set the size to something other than "Large", which is the default setting.

Disabling Cookies in IE Version 6:

• Choose Tools - Internet Options
• Click the General Tab, then press the "Delete cookies" button. Then press Apply.
• Click the Security Tab, then click the "Local Intranet" icon. Then press the "Sites" button. Uncheck

all of the checkboxes. Press OK then Apply.
• Click the Privacy Tab, then press the "Advanced" button. Check the "Override automatic cookie

handling" box, then select "Prompt" for both settings. Press OK as necessary to close all dialogs.
• Close Internet Explorer and restart it.

Disabling Cookies in IE Version 5:

• Choose Tools - Internet Options
• Click the Security Tab, then add "http://localhost" to the list of "Restricted sites". Then press the

"Custom Level" button and adjust the settings so that the browser prompts when a site attempts to
set a cookie. Press OK as necessary to close all dialogs.

• Close Internet Explorer and restart it.

Servlet Lab 4 - 3
Copyright  Descriptor Systems 2003. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



_2. Update your web application so that the user can choose pizza ingredients, e.g. cheese, beef, etc. The
easiest way to do this is to modify the OrderEntry form. Be sure to update your Order class to contain the
new information! You will also need to modify the generated confirmation page to reflect the changes.

Servlet Lab 4 - 4
Copyright  Descriptor Systems 2003. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.


