
Lab 3: Introduction to Dependency Injection

In this lab, you will work with the basics of Spring dependency injection.

Objectives:

• To work with dependency injection

Part 1: Dependency Injection

In this part, you will work with constructor injection and setter injection.

Steps:

_1. This lab depends on successfully completing the basic parts of the last lab - it doesn't depend on the
"experiments". If you did not finish the basic part of the last lab, you should either finish it or ask the
instructor to help you get the last lab's solution.

_2. Follow this procedure to make a copy of your lab02 project:

a. Choose File - Close All to close all open editors.

b. In the Project Explorer, right-click on the lab02 project and choose Copy.

c. Right-click the blank, white area of the Project Explorer and choose Paste.

In the Copy Project dialog, enter lab03 and press OK.

_3. In the same fashion as in the first lab, create a new class in the com.oaktreeair.ffprogram package named
AddressInfo.

Complete the class so it has the following properties, complete with get/set methods:

private String street;
private String city;
private String state;
private String zip;
private String country;

Then write a constructor in the new class that accepts parameters corresponding to each of the fields.

_4. In the spring.xml file, use constructor injection to define an AddressInfo bean with values of your choice.
Assign the new bean an ID of addrInfo01.

_5. Modify the Flier interface and the FlierImpl class to define a property of type AddressInfo named
homeAddress. Be sure to define a get/set method pair for the new property:

public void setHomeAddress(AddressInfo inf);
public AddressInfo getHomeAddress();

Lab 3 - 1
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



_6. In the spring.xml file, use setter injection to inject the addrInfo01 bean reference into the new property.

_7. In the FrequentFlierProgram.java file, add code to the main method to retrieve the home address from the
flier and display its properties to the console.

_8. Run the FrequentFlierProgram.java class as a Java Application. You should see the home address.

Part 2: The @Required Annotation

In this part, you will work with required properties.

Steps:

_1. The ContactInfo bean you created in an earlier lab has four properties: emailAddress, homePhone,
mobilePhone and smsNumber. Let's make the first two required properties:

a. Open ContactInfo.java into the editor. Find the setEmailAddress method, and immediately above it,
annotate it as @Required:

@Required
public void setEmailAddress(String emailAddress)
{

this.emailAddress = emailAddress;
}

Use Source - Organize Imports so that RAD imports
org.springframework.beans.factory.annotation.Required.

b. Repeat for the setHomePhone method.

c. Edit spring2.xml (where the contact01 bean is configured), and comment out the setter-injection
lines for the emailAddress and homePhone properties.

d. Above the "contact01" bean definition, add the following to enable annotation processing:

<bean class=
"org.springframework.beans.
factory.annotation.RequiredAnnotationBeanPostProcessor"/>

Note: The second line in the code above (the fully-qualified class name) is split so it fits on the
printed page, but you must enter it unbroken.

e. Try running FrequentFlierProgram.java again - You should get a BeanCreationException.
Uncomment the required property configuration before continuing.

Part 3: Experimenting

In this part, you can experiment with your application. The following steps list things you can try.

Steps:

Lab 3 - 2
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



_1. Try changing the "flier01" bean's ID configuration to "abc" instead of a number. Run the main program
and see what happens. Be sure to change it back.

_2. In the ContactInfo class, write a constructor that accepts values corresponding to all of the fields. Then,
without changing any configuration, run the main program. What happens, and why? Fix the problem
either by deleting the new constructor, writing a zero-argument constructor or by updating the
configuration.

Lab 3 - 3
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.



Lab 3 - 4
Copyright  Descriptor Systems 2009. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.


