
Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Struts Validation

6 - 1

What is Validation?
Client-Side and Server-Side
Validation
Struts Validation
Techniques

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

All programs, even standalone programs, need to check the input from users, but validation is especially
critical for Web applications. That's because Web apps involve network traffic and are susceptible to
attacks by "script kiddies" and others interested in cracking or breaking the system.

So all well designed Web application should check user input, but note that you really only need to check
user input widgets where the user enters data. For example, in the figure on this page, the Web app
should validate the Name, SSN and Salary fields, but doesn't need to vet the "Exempt employee"
checkbox data.

What is Validation?

6 - 2

Employee Information

Paul

111-22-3333

3221.50

Continue

Name:

SSN:

Salary:

Exempt employee

Validation lets an application verify that users
enter proper data, for example that a serial
number conforms to a particular pattern or that a
zip code is numeric
Validation is required for real-world Web
applications not only so that the application
functions properly but also to prevent attacks (e.g.
buffer overflow or SQL injection attacks)

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This page lists some of the generic kinds of validation performed by Web applications. Note that it
doesn't include application-specific types of validation, for example to verify that an entered serial
number actually matches a real employee. We can perform application-specific validation in
Struts-based applications, but that will require writing code.

Validation Scenarios

6 - 3

Required Field

Data Type

String Length

Value Range

Pattern Match

Ensure that user entered data in the
field

Ensure that user enter correct kind
of data (e.g. an integer)

Ensure that the user entered at least
n characters but less than m

Ensure that numeric values fall within
a range

Ensure that entered text matches a
regular expression

Validation Description

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Client side validation requires that the user's browser support scripting (Struts uses JavaScript). The
main advantage of client-side validation is that since the checking is done entirely on the client, you save
network bandwidth.

The big gotcha with client-side validation is threefold: First, not all browsers fully support JavaScript.
Second, users can disable JavaScript in the browser (usually to avoid popups and the like). Third,
JavaScript programs running on the client cannot access server resources, such as databases.

It's also important to note that savvy hackers can easily avoid client-side validation and therefore bypass
its checking. Therefore, you should never solely depend on client-side validation.

Using Client-Side Validation

6 - 4

Employee Information

Paul

111-22-3333

3221.50

Continue

Name:

SSN:

Salary:

Exempt employee

JavaScript

Client-Side

Client-side validation uses scripting in the browser
to check data before the form is submitted to the
server
Client-side validation makes the application more
responsive, but does not replace server-side
validation because the user can disable browser
scripting

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Server-side validation requires the Web application to retrieve data from the request and examine the
data for correctness. Since the code is running on the server, it can read databases, access directory
services and so forth as needed to perform the validation.

The negative for server-side validation is that it occupies server CPU cycles and thus affects scalability.
In addition, it requires network bandwidth to pass the request to the server and then perform some sort
of "post back" to redisplay the offending page if validation fails.

Using Server-Side Validation

6 - 5

Struts
Controller

Form
Bean

Action

Server-side validation is performed by the Web
application running on the server – it can access
server resources such as databases to perform
the validation

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Because client-side validation is unreliable and generally simplistic, it's absolutely required that all well
written Web applications perform validation on the server, even if you have enabled client-side
validation.

So why bother with client-side validation at all? To save network bandwidth and make your Web
application more responsive by avoiding unnecessary roundtrips.

Client-Side vs Server-Side Summary

6 - 6

Employee Information

Paul

111-22-3333

3221.50

Continue

Name:

SSN:

Salary:

Exempt employee

JavaScript

Client-Side

Struts
Controller

Form
Bean

Action

Because of the strengths and weaknesses of the
techniques, Web applications can use both client
and server-side validation
Note that server-side is always required, even if
the also validates

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Struts provides several techniques you can use to validate user input, both on the client and on the
server.

In Struts version 1.0, most programs used only server-side validation using a combination of code in the
ActionForm's validate() method and the Action's execute() method. Struts version 1.1 still supports those
techniques, but provides another option: declarative validation, where you configure the validation rules
and Struts generates the validation code for you (both JavaScript and in the ActionForm).

Note that if you decide to validate in the Action's execute() method, you will need to define a mapping so
that the Struts controller transfers control back to the offending page is validation fails. The act of
re-displaying a page with validation errors is referred to as a "post-back". The Struts controller
automatically does a post-back if validation fails in the ActionForm.

Struts Validation Techniques

6 - 7

Employee Information

Paul

111-22-3333

3221.50

Continue

Name:

SSN:

Salary:

Exempt employee

JavaScript

post-back
(if validation

fails)

Client-Side

Struts
Controller

Form
Bean

Action

validate()
{ .. }

execute()
{ .. }

Programmatic validation in the ActionForm
(server-side)
Declarative validation using the Struts Validator
framework (client and server-side supported)
Programmatic validation in the Action (server-side)

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The ActionForm is a nice place from which to perform validation. The ActionForm superclass provides a
method named validate() that you can override and return a collection of error objects, each of which
contains an error string. If validation fails (i.e. the error collection has entries), then the offending form is
re-invoked. The form can then display the error messages, giving the user an opportunity to try again.

Programmatic ActionForm Validation

6 - 8
Form
Bean

validate()
{ .. }

This technique has been in Struts since the
beginning – you override the validate() method in
the ActionForm and add errors to an error
collection
If the error collection is non-empty, the Struts
controller performs a postback to the input form
which can display the errors to the user with
Struts HTML tags
For maximum flexibility, you can define the error
messages in an ApplicationResources.properties
file instead of inline in the code

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Here we show a fragment of an ActionError class's validate() method. It's important to note that the
Struts controller calls validate() after it calls the setXxx() methods to populate the ActionForm with the
user's input. So the validate() method can check its own properties (here, the "name" property is shown)
and add an ActionError object to a collection if validation fails.

In this case, we are ensuring that the "name" property has at least some characters in it.

To avoid hard-coding error strings, we instead return an ActionError object that contains a keyed error
string. The Struts controller uses the key to look up the actual error message string from a properties file

that way, if we want to change the message (perhaps translate to a different national language), we
don't need to recompile the ActionForm.

Programmatic ActionForm Validation, cont'd

6 - 9

ApplicationResources.properties

name.required=Please enter a name

. . .

The validate() method can check string length,
data types and so forth

public ActionErrors validate (ActionMapping mapping
 , HttpServletRequest request)
{
 ActionErrors errors = new ActionErrors();

 if ((name == null) || name.trim().length() == 0)
 errors.add ("name"
 , new ActionError ("name.required"));

 . . .

 return errors;
}

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

When the Struts controller performs a post-back, it stores the list of error messages in the request (or
session) so that the HTML "errors" custom action can display them.

Theses Struts 1.1 custom actions provide a lot of flexibility in formatting and displaying errors (Struts 1.0
was much more limited).

Displaying Validation Errors

6 - 10

Employee Information

111-22-3333

3221.50

Continue

Name:

SSN:

Salary:

Exempt employee

Please correct the following:

Please enter a name

Struts provides custom actions in the logic and
html libraries to format and display validation
error message

<logic:messagesPresent>

 <p>
 Please correct the following:
 </p>

 <html:messages id="error">

 <c:out value="${error}"/>

 </html:messages>

</logic:messagesPresent>

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Here we show a fragment of the execute() method in an Action. It calls an application-specific isSsnOK()
method which presumably accesses a database to see if the entered social-security number matches
the number of an employee. If not, the Action returns a mapping string which causes the Struts
controller to transfer control to some sort of error page.

Note that you could be more clever and have the action store errors in the request/session in the same
way that the Struts controller does for ActionForm errors. See the Struts documenation for details.

Programmatic Action Validation

6 - 11

In some cases, you may wish to perform
validation in the model rather than the controller
(the ActionForm is a Controller component)

public ActionForward execute (
 . . .ActionForm form . . .)
{
 EmployeeForm theForm =
 (EmployeeForm)form;

 if (!isSsnOK (theForm.getSsn())
 return mapping.findForward
 ("validation-failed");
 . . .
}

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Here we show a fragment of the struts-config.xml file that configures a Struts application. Especially note
the "validate" attribute and the "input" attribute, which is where the Struts controller "posts-back" if the
ActionForm returns a non-empty error collection.

Configuring Validation

6 - 12

<action-mappings>
 <action
 path="/EmployeeInfo"
 type="actions.UpdateEmployee"
 scope="request"
 name="UpdateEmployeeForm"

 unknown="false"

 <forward name="success"
 redirect="false"
 path="/index.jsp"/>

 </action>
 . . .
</action-mappings>

 input="/update-employee.jsp"

 validate="true">

 <forward name="validation-failure"
 redirect="false"
 path="/error.jsp"/>

Post-back location

Configures validation

Returned by
Action if validation
fails

In the struts-config.xml file, you configure
validation for a given action by setting the
validate attribute to "true"

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Programmatic validation is fine, but it gets tedious and repetitive for standard scenarios. The Struts
Validation Framework lets you avoid the tedium instead of writing code, you declare your validation
requirements and Struts takes care of it. This carries on the idea introduced with the dynamic
action-forms we learned about in an earlier chapter.

The Struts Validation Framework

6 - 13

The Struts Validation framework lets you perform
validation declaratively (without writing code)
The framework is bundled with Struts version 1.1
and later and uses the Jakarta Commons
Validation framework
You configure the framework by writing XML
descriptions of the desired validations

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The validation-rules.xml file defines the standard validators included with the validation framework.
These standard validators handle the typical scenarios we've touched on in this chapter. In addition, you
can combine declarative validation with the programmatic validation covered earlier, so you can handle
any cases not covered by the standard validators.

It's also possible to write your own custom validators, but we will not cover that topic in this course.

Validations Supported by the Validation
Framework

6 - 14

Required Field

Data Type

String Length

Value Range

Pattern Match

Ensure that user entered data in the
field
Ensure that user enter correct kind
of data (e.g. an integer)

Ensure that the user entered at least
n characters but less than m
Ensure that numeric values fall within
a range

Ensure that entered text matches a
regular expression

Validation Description

The framework supports most of the common
validation scenarios and you can extend it either
by writing your own validators or by combining it
with the programmatic validation techniques
covered earlier

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

To use declarative validation, you include the standard validator-rules.xml file in your Web application
and then create the validation.xml file to declare your validation requirements.

It's also important to note that the standard validators include client-side JavaScript to decrease network
roundtrips and improve the responsiveness of the application.

Configuring Struts Validation Framework

6 - 15

WEB-INF

web.xml

struts-config.xml

validator-rules.xml

validation.xml

classes

deployment
descriptor

Struts
configuration

Application
validation

configuration

Standard
validators

To configure the framework, you must add create
a file named validation.xml and include the Struts
validation-rules. xml in the WAR file
You must code the validation.xml file
The validation-rules. xml file contains the
definitions of the standard Struts validators
You also must add a "plug-in" entry for the
Validator in the struts-config.xml file

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

For learning purposes, it's good to know about and study the validation-rules.xml file, but you don't
generally need to modify it.

Here we show one of the standard validators defined in the validation-rules.xml file the "required"
validator, which checks to see if the user entered any data into an associated field.

The "validator" element defines a validator's name, implementation class and method, arguments to the
method, default error message key and optionally the JavaScript to perform client-side validation.

Like most of the standard validators, the "required" validator is actually implemented by the FieldChecks
class, which is part of the Struts JAR file.

The Validator-rules. xml File

6 - 16

<form-validation>
 <global>

. ..
 </global>
</form-validation>

 <validator name="required"
 classname="org.apache.struts.validator.FieldChecks"
 method="validateRequired"
 methodParams="java.lang.Object,
 org.apache.commons.validator.ValidatorAction,
 org.apache.commons.validator.Field,
 org.apache.struts.action.ActionErrors,
 javax.servlet.http.HttpServletRequest"
 msg="errors.required">
 <javascript><![CDATA[. . .]]></javascript>
 </validator>

validator
name

validator
implementation

method

client-side
JavaScript

validator
implementation

class

This file configures the standard Struts validators
and defines the JavaScript used for client-side
validation

http.HttpServletRequest"

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This is the critical file when using declarative validation. In it, you assign validators to the fields (actually
properties) from an input form. For each field, you use the "depends" attribute to list one or more
validators, a portion of the message string, and then, depending on the validators, you supply additional
information via "variables". In this example, we are configuring the "required" validator, which needs no
additional information, and the "mask" validator, which requires a regular expression.

The Validator. xml File

6 - 17

<form-validation>
 <formset>

 <

 </field>
 . . .
 </form>
 . . .
 </formset>
</form-validation>

<form name="RegisterForm">
field property="ssn"

depends="required,mask">
<arg0 key="ssn.display" />

 <var>
 <var-name>mask</var-name>
 <var-value>
 [0-9]{3}-[0-9]{2}-[0-9]{4}
 </var-value>
 </var>

form to
validate

field to validate

validator list

keyed message string
for validation failure

variables (parameters)
(validator-specific)

To use declarative validation, you must complete
this file to map validators to the fields in your
ActionForms

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

As we've already seen, for most flexibility, it's best to define message strings in the Web app's property
file.

When you use declarative validation, Struts builds an individual message string from two places: a
"base" string and a field-specific string. Note that the base string contains placeholders, for example {0},
where Struts will substitute the field-specific string. More on this on the next page.

Also note that base string names pretty much match validator names the one exception is the
"errors.invalid" base string, which corresponds to the "mask" validator. You can see how each of the
base strings maps to a validator by examining the validator-rules.xml file.

Error Message Strings

6 - 18

You typically define validation error message
strings in the ApplicationResources.properties file

#-- validation error base strings
errors.required={0} is required
errors.integer=The {0} must be a whole number
errors.range=The {0} is not in the range {1} through {2}
errors.invalid=The {0} is not correctly formatted
errors.email=The {0} does not appear to be valid
errors.date=The {0} does not appear to be a valid date

#-- Registration form
name.display=name
email.display=email address
age.display=age
ssn.display=Social Security number
graduationDate.display=graduation date

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The error message that the Struts controller returns on a post-back is constructed in a flexible, but
perhaps complex way. When the validator returns "false", Struts first looks in the validator-rules.xml file
to find the key for the base message string for that validator, in this case "errors.invalid". Struts then
replaces any placeholders with the "arg0" key specified in validation.xml.

This technique lets you create generic base message strings and customize and re-use them for
multiple fields.

You should also note that validator-rules.xml defines default, generic base message strings for all of the
standard validators. Any entries with the same key in the ApplicationResources.properties file override
the generic message strings. Generally, you'll want to provide your own base message strings to match
the "voice" of your application.

Error Message String Construction

6 - 19

 <form name="RegisterForm">
 <field property="ssn"
 depends="required,mask">
 <arg0 key="ssn.display" />
 <var>
 <var-name>mask</var-name>
 <var-value>
 [0-9]{3}-[0-9]{2}-[0-9]{4}
 </var-value>
 </var>

errors.invalid=The {0} is not correctly formatted

ssn.display=Social Security number

The Social Security number is not correctly formatted

validation.xml

{0}

ApplicationResources.properties

validation-rules.xml

<validator name="mask"
 . . .
 msg="errors.invalid">
</validator>

Assuming that the entered Social Security number
fails the mask validator:

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The "required" validator is very simple it checks to see if the text for a property has any characters. If
not, the validator returns false and Struts constructs an error message string as described previously.

Often, you will use the "required" validator in combination with other validators, since the other validators
generally accept empty input as OK.

Required-Field Validator

6 - 20

<field property="firstName"
 depends="required">
 <arg0 key="firstName.display" />
</field>

errors.required={0} is required
firstName.display=First name

validation.xml ApplicationResources.properties

This validator determines if a field is not null and
if the length of the field is greater than zero, not
including whitespace
If the validation fails, the validator adds the
specified keyed message string to the ActionErrors
collection
You define the mapping for the keyed message
string in the ApplicationResources.properties file

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The data-type validators check to see if entered data matches the form of the specified data type.

Here we show an example of using the "integer" validator to ensure that the user enters a whole number
for an "age" field".

Note that it's common to use the "required" validator in conjunction with a data-type validator, since the
data-type validators accept empty input as OK.

Data Type Validators

6 - 21

<field property="age"
 depends="required,integer">
 <arg0 key="age.display" />
</field>

validation.xml

errors.integer=The {0} must be a whole number
age.display=age

ApplicationResources.properties

These validators determine if the text in a field is
convertible to one of these standard Java types:
byte, short, integer, long or double

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

These validators ensure that numeric values fall within a range that you specify as "variables" in
validation.xml. You also need to configure the validator to pass the range values so the validator can
substitute the range values into placeholders in the base string. When defining the range arguments, you
need to specify whether the arguments will come from a resource file entry or be defined in
validation.xml itself. Here we choose the options ${var.min} and ${var.max} to indicate that the range
values are defined as variables in validation.xml.

This example shows using the integer-range validator for an "age" field (this example is an extension of
the one on the previous page). In addition to being an integer, the entered value for "age" must be
greater than or equal 12 and less than or equal 99.

Range Validators

6 - 22

validation.xml ApplicationResources.properties

<field property="age"
 depends="required,integer,intRange">
 <arg0 key="age.display" />
 <arg1 name="intRange" key="${var:min}"
 resource="false"/>
 <arg2 name="intRange" key="${var:max}"
 resource="false"/>
 <var>
 <var-name>min</var-name>
 <var-value>12</var-value>
 </var>
 <var>
 <var-name>max</var-name>
 <var-value>99</var-value>
 </var>
</field>

errors.range=The {0} is not in the range {1} through {2}
age.display=age

These intRange and floatRange validators determine
if a field contains an integer or float within a
specified range
You can supply the range as arguments in the
field definition

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

These validators let you ensure that the user enters strings that meet your minimum and maximum
length requirements.

Here we show checking that the user enters a password of at least six characters.

String Length Validators

6 - 23

validation.xml ApplicationResources.properties

<field property="password"
 depends="required,minLength">
 <arg0 key="password.display" />
 <arg1 name="minlength"
 key="${var:minlength}"
 resource="false"/>
 <var>
 <var-name>minlength</var-name>
 <var-value>6</var-value>
 </var>
</field>

errors.minlength=The {0} must be at least {1} characters
password.display=password

These validators determine if a field's character
length is greater than or equal or less than or
equal a specified value
Note that null value is considered an error
You provide the minimum or maximum values
as arguments in the field definition

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Regular expressions are a powerful pattern-matching language that let you construct elaborate and
exact specifications for the format of strings. We will not cover the regex language in detail here
consult any good textbook on the subject.

Here we supply a simple regex that specifies that a Social Security number should have three digits, a
dash, two digits, another dash and then four digits.

Regular Expression Validators

6 - 24

validation.xml ApplicationResources.properties

<field property="ssn"
 depends="required,mask">
 <arg0 key="ssn.display" />
 <var>
 <var-name>mask</var-name>
 <var-value>
 [0-9]{3}-[0-9]{2}-[0-9]{4}
 </var-value>
 </var>
</field>

errors.invalid=The {0} is not correctly formatted
ssn.display=Social Security number

These validators use a determine if a field's
contents match the specified regular expression
You supply the regular expression as an argument
in the field definition

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Struts provides three more standard validators:

The "date" validator checks to see if an entered string "looks" like a date. You can specify a
"datePattern" attribute in validate.xml that defines the format of the date, but if you don't, the validator
uses the DateFormat.SHORT format for the current locale. For more information on date formats, see
the JavaDoc for the java.text.DateFormat and java.text.SimpleDateFormat classes.

The "email" validator does a simple check to see if an entered string "looks" like an email address (i.e. it
has an @ and a dot). It does not actually verify that the email address works.

The "creditcard" validator uses a well-known algorithm (similar to a hash code) to determine if an
entered string has valid digits for a credit-card number. It does not verify that the number actually
corresponds to a valid credit card with an non-zero balance!

Miscellaneous Validators

6 - 25

Validator Variable(s)Base String

email errors.email arg0 - property name

date errors.date arg0 - property name

creditcard errors.creditcard arg0 - property name

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

To enable client-side validation, you can write a "javascript" element that specifies the name of the
Struts ActionForm class for the input JSP and then, on the HTML form definition, add an "onsubmit"
attribute with a value that looks like "return validateXXXX(this)", where the XXX is the name of the
ActionForm class.

Enabling JavaScript in the Input Form

6 - 26

<%@ taglib uri="http://jakarta.apache.org/struts/tags-html"
 prefix="html" %>

. . .

 <html:form action="My.action" method="post"

. . .

<html:javascript formName="MyForm" />

 onsubmit="return validateMyForm(this)">

All of the standard validators support client-side
JavaScript
To enable client-side validation, you must add
some simple code to your input form

http://jakarta.apache.org/struts/tags-html"

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The generated JavaScript performs validation when the user clicks the submit button, but before the
form is actually submitted to the server. If validation fails, the JavaScript code assembles the validation
messages into a JavaScript "alert", which in most browsers, displays a message box of some sort.

It's important to emphasize that this all happens on the client, so no round trip to the server occurs. It's
also important to remember that this checking only works if the browser supports JavaScript and if the
user has scripting enabled in the browser.

Client-Side Validation

6 - 27

Employee Information

3221.50

Continue

Name:

SSN:

Salary:

Exempt employee

name is required
Social Security number is required

!

OK

[JavaScript Application] x

With client-side validation enabled, the emitted
JavaScript pops up a message box if validation
fails -- no roundtrip!
The message box contains the same messages as
would be generated by server-side validation

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Chapter Summary

6 - 28

In this chapter, you learned:

The difference between client and
server-side validation
About the standard Struts validators

Copyright © Descriptor Systems, 2001-2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

