

You can find more information about UDDI at www.uddi.org.

Many current UDDI implementations stil l are at version 2.0.

An important facet o f SOA and o f Web services is dynamic discovery o f services at runtime.

UDDI is the standard technology for such discovery in the Web services world.

The intent o f UBR is primarily t o allow businesses t o advertise themselves and the services they

provide −− since it’s no t moderated, it’s no t very reliable, however.

Instead, most enterprises wil l most likely run private UDDI registries within their firewall and

perhaps allow trusted business partners access as well. Most J2EE application server vendors,

including IBM WebSphere and BEA WebLogic provide UDDI servers as part o f their containers.

Note that as o f January 2006, the UBR is defunct.

The UBR is operated by several companies, including IBM, Microsoft, SAP and NTT. Here we

show a screenshot o f the Microsoft Web interface for the UBR.

UDDI defines a replication protocol that is implemented by the UBR. This means that i f you

register a business o r a service using say Microsoft’s Web interface, the information you enter

wil l be replicated t o the other servers so you could use another company’s interface, say IBM’s,

t o query the information.

The UDDI API is a textbook example o f where SOAP is useful −− the API itself is platform,

language and vendor neutral.

However, as we will see later, i n most cases you will no t need t o send raw SOAP messages t o

work with UDDI since there are several higher−level APIs available.

You can attach categories t o almost everything in UDDI, including business entries, service

entries and so forth. In most cases, the more category information you provide, the more likely

i t is that requestors wil l f ind your data.

NAICS is an acronym for North American Industry Classification System.

. . .

51 Information

511 Publishing Industries

5111 Newspaper, Periodical, Book, and Database Publishers

51111 Newspaper Publishers

51112 Periodical Publishers

51113 Book Publishers

51114 Database and Directory Publishers

51119 Other Publishers

511191 Greeting Card Publishers

511199 All Other Publishers

5112 Software Publishers

51121 Software Publishers

. . .

The UDDI registry is organized into "objects", the structure o f which is show here. The

"BusinessEntity" represents an enterprise and contains the business name, contacts, categories

and so forth.

A BusinessEntity can contain zero o r more "BusinessService" objects, each o f which provides

high−level information about a service, including the service’s name and categories.

Associated with a BusinessService, is zero o r more "BindingTemplate" and "tModel" pairs, which

provide technical information about the service, including the service’s "access point", which is

the URL t o which i t responds.

The first important field t o discuss is the "BusinessKey", which is a Universally Unique Identifier

(UUID) assigned by the registry when the BusinessEntry is created.

The "CategoryBag" allows you t o assign zero o r more categories t o the business, typically using

one o f the taxonomies discussed earlier.

The "IdentifierBag" lets you assign zero o r more unique identifiers for the business, for example

a DUNS number.

The important field here is the "ServiceKey", which is a UUID assigned by the registry when the

service is published t o the registry. This is useful since it’s possible t o search uniquely for a

service, given its key.

The useful fields here are the "AccessPoint" i n the BindingTemplate, which contains the

endpoint address o f the service, and the "OverviewDoc" i n the tModel, i n which you can store

the URL o f the WSDL for the service.

Note that both structures contain UUIDs that uniquely identify them −− again, that lets

requesters perform unique searches i f they know the UUID.

Since UDDI was not explicitly defined for use by Web services, we have t o "kludge" a b i t t o make

i t work. The tr ick is t o store a reference t o the WSDL in the "OverviewURL" field which is a

sub−field o f "OverviewDoc" i n the tModel. Then, by convention, t o indicate that we’ve stored a

WSDL reference there, we attached a well−known, predefined "wsdlSpec" tModel as a category

on the tModel i n question.

Note that this is how i t works in UDDI version 2 −− in version 3 , there’s a more elegant way o f

indicating that a tModel contains a WSDL reference.

For more information, see:

http://www.uddi.org/bestpractices.html

http://www−128.ibm.com/developerworks/webservices/library/ws−wsdl/

In most cases, before you can publish information t o a registry, you must authenticate with the

registry. I f the registry provides no native login capability, you can use the "get_authToken"

message t o login and retrieve a token that you can pass on subsequent messages.

Note that the "save_xxxx" messages will either create a new entry o r update an existing one −−

these messages accept the unique identifier for the structure in question (e.g. a tModelKey). I f

you don’t provide the unique ID, the registry wil l create a new entry and return the unique ID.

Here we show an example publishing message −− save_business. Note that since we didn’t

provide a businessKey, the registry assumes that we are publishing a new business entity, and

will return a new key in the response message.

Note also that we are assuming here that we’ve previously authenticated with the registry and

we are providing the "authInfo" token returned by a pervious call t o "get_authToken".

<Envelope

 xmlns="http://schemas.xmlsoap.org/soap/envelope">

 <Body>

 </Body>

</Envelope>

 <save_business generic="2.0"

 xmlns="urn:uddi−org:api_v2" >

 <authInfo>xxxyyyzzzzz</authInfo>

 <businessEntity businessKey="">

 <name>Goliath, Inc.</name>

 </businessEntity>

 </save_business>

Unlike the publishing API, the inquiry API normally doesn’t require authentication. Note that i n

many cases, i t takes two messages t o get detailed information f rom the registry.

Here we show a sample inquiry −− "find_business". The response message will contain the list

o f business entities that match the specified name. Note that you can use the wild−card

character "%" t o match more than one business name.

<Envelope

 xmlns="http://schemas.xmlsoap.org/soap/envelope">

 <Body>

 </Body>

</Envelope>

 <find_business generic="2.0"

 xmlns="urn:uddi−org:api_v2">

 <name>Goliath, Inc</name>

 </find_business>

The good news is that there are several choices −− the bad news is that as o f this writing, none

o f the APIs has established itself as the de facto standard.

This is the real benefit o f a service−oriented architecture −− we can write clients that are

insensitive t o changes in the service provider. In other words, instead o f having the client

hard−code information about the service, the client can determine the information at runtime

−− that way i f something about the service changes, the client need not be re−written.

