
Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

In this chapter, you will learn about various techniques so that your servlets can maintain state between
requests.

Sessions

8 - 1

Why use sessions?
Using sessions
Cookies and URL rewriting

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

HTTP was originally designed to be a simple protocol, so the connection between browsers and the web
server is transient -- essentially, the browser must open a new connection for each request. This is
different than with Telnet for example, where the client and server maintain a long-lived connection.

In the early days of the Web, HTTP's statelessness was not an issue. But e-commerce and related
applications need to maintain state across requests. The classic example is the shopping cart, which
must "remember" its contents until the order is complete.

HTTP is a Stateless Protocol

8 - 2

Browser Browser Browser

Unlike FTP or Telnet, HTTP conversations do
not maintain a long-lived connection between
the client and server
That's great for normal Web browsing, but not
good for Web applications that need to
maintain state between conversations (e.g. a
shopping cart or a secure login)

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

We will define a session as being a series of requests from the same browser instance. Note that if the
user runs two different browsers, that's not considered a session, even if the browsers are accessing the
same site. This definition also excludes the user running browsers on different computers to the same
Web site.

For a session to work, the application must somehow remember the session information and be able to
connect it with subsequent requests from the same browser instance.

What is a Session?

8 - 3

Browser Browser Browser

Session
Info

Session
Info

A session is a series of requests from the
same user, running the same browser

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The hidden form field technique requires each page to contain an HTML form with one or more fields of
type "hidden". The web application uses the hidden fields to maintain state information -- when the user
wants to link to a new page, the application generates the new page dynamically, complete with the
state information in a form field. This technique is tedious and requires all pages to be generated
dynamically, since they need to contain the state information as part of the HTML itself.

In URL rewriting, the application appends state information to the URL for each page in the application.
This technique also requires dynamic page generation, since any hyperlinks in the page must be
encoded on the fly to contain the state information.

Cookies are probably the most elegant solution. With cookies, the application instructs the browser to
create a small file on the client's computer that contains the state information. On subsequent requests,
the browser passes the information so the application can maintain state. The problem with cookies is
that many people view them as an invasion of privacy, and set up their browser to reject cookies. Thus,
a web application cannot always depend on cookies.

Note that a container can use other techniques to maintain state if available, for example SSL Sessions.

Remembering State

8 - 4

Browser Browser Browser

Session
Info

Session
Info

To manage sessions, Web programmers have
developed a few techniques:

Hidden form fields
URL rewriting
Cookies

These techniques work, but are somewhat
tedious to program, may have privacy
implications and are subject to how the user
configures the browser

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Instead of explicitly using the techniques shown on the last page, servlet programmers can use an API
that masks most of the complexity of maintaining sessions. To use the servlet session support, servlets
create objects and attach them by name to a session object that's maintained by the servlet container.
When a subsequent request arrives from the same browser, the container matches the request with the
appropriate session object -- the servlet can then retrieve the objects store previously.

Note that "under the covers", the API uses cookies or URL rewriting. Some containers, such as JRun,
first try to use cookies and then fallback to URL rewriting if cookies don't work. While that sounds
reasonable, it does require some extra programming to work as we will cover later.

The Servlet Session API

8 - 5

Container’s JVM

Session
object

Session
object

Session
object

session
attribute
objects

(name-value)

To make remembering state easier for the
servlet programmer, the container provides an
API that the servlet can use set or retrieve
state
For example, a login page could set the login
information and other pages could retrieve
that info
Under the covers, the API uses cookies or URL
rewriting

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The sessionIDs are like database key fields -- given the sessionID, the container can find the
corresponding session object. If the user's browser supports cookies, the container uses a session
cookie to store the ID (session cookies expire automatically when the session ends). If the URL rewriting
is used, then the container, with help from the servlet, appends the sessionID as a parameter on each
URL. We will see more on cookies and URL rewriting coming up.

How Does the Session API Work?

8 - 6

Container’s JVM

Session
object

sessionID=xxxxxx

sessionID=yyyyyy

sessionID=zzzzzz

Session
object

Session
object

Each session object is tagged with a unique
session ID
On each request, the container uses cookies
or URL rewriting to pass the session ID
The container can then use the sessionID to
find the corresponding session object

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This page shows part of the API that let servlets maintain state.

The two most useful methods shown are the getSession methods. These methods give a servlet access
to a session object, to which the servlet can attach state information. The getSession method with no
arguments returns a session object, creating a new one if necessary. The other getSession method
accepts a boolean. You pass true to create a new session or retrieve an existing one. If you pass false,
that method returns null if there is no current session.

You can use getSession (false) to determine if there's a current session -- for example, if you use a
session to maintain login information, lack of a session means that the user isn't logged in (perhaps they
previously set a bookmark on a page and skipped the login page).

The Servlet Session API, cont'd

8 - 7

<<Interface>>
HttpServletRequest

. . .
getRequestedSessionId():String
getSession(create:boolean):HttpSession
getSession():HttpSession
isRequestedSessionIdFromCookie():boolean
isRequestedSessionIdFromURL():boolean
isRequestedSessionIdFromUrl():boolean
isRequestedSessionIdValid():boolean
. . .

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This figure shows additional APIs for manipulating sessions. HttpSession is the type of the object
returned by the getSession methods shown on the previous page.

The two most useful methods here are getAttribute and setAttribute. The setAttribute method lets you
attach an object by name to the session, while getAttribute lets you retrieve the object from the session,
given its name.

Note that there are various APIs that let you examine or configure session timeouts, invalidate the
session, and so forth.

The getValue and putValue methods are deprecated and replaced by getAttribute and setAttribute.

The Servlet Session API, cont'd

8 - 8

<<Interface>>
HttpSession

getValue(name:String):Object
putValue(name:String, value:Object):void

getAttribute(name:String):Object
getAttributeNames():Enumeration
getCreationTime():long
getId():String
getLastAccessedTime():long

getMaxInactiveInterval():int
getSessionContext():HttpSessionContext
getValueNames():String;
invalidate():void
isNew():boolean
removeAttribute(name:String):void

removeValue(name:String):void
setAttribute(name:String, value:Object):void
setMaxInactiveInterval(interval:int):void

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This page shows a common pattern for using sessions in an application with multiple servlets. The first
servlet creates a session and then attaches objects to it (not shown here). Subsequent servlets then
retrieve the session object and then retrieve the named objects from the session (not shown).

In this application, after the first servlet, the lack of a session is considered an error. Perhaps the first
servlet processes a login page that establishes the user's credentials. If the user goes directly to a
subsequent page without visiting the first page, there will be no session and this program would
generate an error response, perhaps redirecting the request back to the login servlet.

Creating or Retrieving a Session

8 - 9

You can request a new or existing session
object by calling the getSession method of
the HttpServletRequest object

First Page

Subsequent Page

//create a new session
 HttpSession session = request.getSession (true);

//retrieve existing session
 HttpSession session = request.getSession (false);
 if (session == null) error();

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This fragment of a servlet is part of an online quiz-talking application. In lines 1 and 2, it defines integers
that keep track of the counts of correct and incorrect answers. Then in code omitted here for brevity, it
scores a quiz and updates the integer variables. Then the servlet creates two Integer objects in lines 4 to
7 and then attaches them in lines 9 through 12 to a previously retrieved session object. The servlet
assigns the names CorrectAnswers and WrongAnswers to the Integer objects.

Since the data attached to a session must extend Object, this servlet uses the Integer class to "wrap"
the integer primitive variables that hold the count of correct and incorrect answers.

Saving State in a Session

8 - 10

To write information into the session, use
the setAttribute method
Note that the value must be an Object!

1 int correctAnswers = 0;
2 int wrongAnswers = 0;
3 . . .
4 Integer correctInteger =
5 new Integer (correctAnswers);
6 Integer wrongInteger =
7 new Integer (wrongAnswers);
8
9 session.setAttribute ("CorrectAnswers"
10 , correctInteger);
11 session.setAttribute ("WrongAnswers"
12 , wrongInteger);

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This is a fragment of another servlet that's part of the quiz-taking application. This servlet retrieves the
session object (no shown, but same as before) and then can retrieve the Integer wrapper objects for the
count of correct and incorrect answers. Note that to retrieve the objects, this servlet uses the same
names as assigned in the previous servlet.

Retrieving State from a Session

8 - 11

To retrieve information from the session,
use the getAttribute method

1 . . .
2
3 Integer correctInteger = (Integer)
4 theSession.getAttribute ("CorrectAnswers");
5 Integer wrongInteger = (Integer)
6 theSession.getAttribute ("WrongAnswers");
7
8 int correct = correctInteger.intValue();
9 int wrong = wrongInteger.intValue();

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The way the session API is actually implemented is up to the container. Most container vendors provide
tools or configuration files that let the system administrator control how sessions work. For example, if
your application runs in an environment where cookies are disabled in browsers, you could configure the
container to use URL rewriting instead.

Configuring Sessions

8 - 12

Most containers let you configure session
characteristics via a GUI or by editing
configuration files
For example, you can configure whether the
container implements session via cookies or
URL rewriting
Many containers will attempt to use cookies
and "fall back" to URL rewriting if the
browser does not have cookies enabled

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The container can use either session cookies or URL rewriting to "remember" the session ID. If cookies
are used, then the servlet has no extra work to do. But if URL rewriting is required, then the servlet must
ensure that all URLs in the generated HTML are encoded with the session ID. To make that easier, the
servlet API provides the encodeURL and encodeRedirectedURL methods. Here we show using
encodeURL to encode the URL for a hyperlink in a page generated from a servlet.

Using URL Rewriting

8 - 13

If your user's browsers do not support cookies,
then you should use URL rewriting
To use URL rewriting, you must encode all
HTML hyperlink URLs generated by servlets
You should also encode any URLs used for
redirection

String url =
 res.encodeURL ("http://localhost/servlet/Second");
out.println ("Next ");

http://localhost/servlet/Second"

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This figure shows what an encoded URL looks like. Note that the sessionID "magic number" is appended
to the URL of this servlet, which is the second servlet in a Web application.

Using URL Rewriting, cont'd

8 - 14

Browser

http://localhost/servlet/Second?jsessionid=224654982681714513

With URL rewriting, each URL has the
session information appended to the actual
URL

http://localhost/servlet/Second?jsessionid=224654982681714513

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

The session API uses so-called session cookies that automatically expire at the end of the session. If
you need to store information on a client computer that lasts longer, you can use the cookie API we will
cover next.

Note that some users will disable cookies on their browser due to privacy concerns. If so, the techniques
shown here will not work.

Using Cookies Explicitly

8 - 15

Sometimes you may need to create and
access cookies directly instead of using the
Servlet session API
For example, you may want to store
information for a longer time period than
the session cookies used by the API, or you
might want to save info that's not
associated with a session
The Servlet API contains a rich set of
methods to let you manipulate cookies
directly

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This fragment of a servlet shows setting a relatively long-lived cookie that stores a String value under the
name "mycookie" (how original!)

Note that you actually add cookies to the response instead of "setting" them -- that lets you set multiple
cookies with different names.

Cookie Example: Setting a Cookie

8 - 16

This example sets a cookie that will not
expire for 24 hours

1 public void doGet (HttpServletRequest req
2 , HttpServletResponse res)
3 throws ServletException, IOException
4 {
5 . . .
6 String val = "123ABC";
7 Cookie cookie = new Cookie ("mycookie"
8 , val);
9 cookie.setMaxAge (3600 * 24);
10 res.addCookie (cookie);
11 . . .
12 }

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

This fragment is the complement to the code shown on the last page -- it retrieves the cookie with name
"mycookie". Actually, there's no easy way to find a cookie by name. Instead, you query an array of all
cookies in the request (line 7) and then iterate, searching for the cookie by name (line 10). The servlet
can then retrieve the cookie's value (line 12).

Cookie Example: Retrieving a Cookie

8 - 17

1 public void doGet (HttpServletRequest req
2 , HttpServletResponse res)
3 throws ServletException, IOException
4 {
5 . . .
6 String val = null;
7 Cookie[] cookies = req.getCookies();
8 for (int i = 0; i < cookies.length; i++)
9 {
10 if (cookies[i].getName().equals ("mycookie"))
11 {
12 val = cookies[i].getValue();
13 break;
14 }
15 }
16 . . .
17 }

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Lab Exercise

8 - 18

Title: Lab 4: Sessions
Approximate time: 45 minutes

Copyright © Descriptor Systems, 2001, 2002, 2003. Course materials may not be reproduced in whole or in part without prior written consent of Descriptor Systems

Chapter Summary

8 - 19

In this chapter, you learned:

The different ways to maintain state
How to use the servlet session API

