JSF Architecture

* JSF View Components
 Managed Beans
* Navigation

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

JSF Requirements

- A Faces application needs:
o Configuration of the Faces servlet in the Web
deployment descriptor
o A Faces configuration file
o The JSF JARs in the WEB-INF/lib folder or
provided by the application server
« The application also typically contains JSPs (or some
other view technology) and managed beans

2 -2

JEE application servers at version 5 or later include the required JSF libraries so that
applications need not configure them in the Web app.

Instead of using JSPs for the view, you can use an alternative technology such as Facelets or
Velocity.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Configuring the Faces Servlet

¢ In JSF, the Faces servlet acts as a front controller
and must process ALL requests

* You configure the Faces servlet in the standard
Web deployment descriptor

web.xml

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>
javax.faces.webapp.FacesServilet
</servlet-class>
<load-on-startup>-1</load-on-startup>
</serviet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.faces</url-pattern>
</servilet-mapping>

OooNOUVID WN R

N p R
| RO
W

You must configure the JSF servlet in web.xml and assign it a URL pattern. There is no
requirement for the URL pattern, but the *.faces extension mapping shown here is common.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

O ooONOUVID WN R

<?xml version="1.0" encoding="UTF-8"7>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
id="WebApp_ID" version="2.5">

<serviet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>
javax.faces.webapp.FacesServiet
</serviet-class>
<Toad-on-startup>-1</Toad-on-startup>
</serviet>
<servlet-mapping>
<servlet-name>Faces Servlet</serviet-name>
<url-pattern>*.faces</url-pattern>
</servilet-mapping>

20 </web-app>

web.xml

JSF URLs

¢ URLs from the client must follow the mapping
that you configure in the Web deployment
descriptor for the Faces servlet

« In this case, the Faces servlet strips the ".faces"
from the URL and substitutes ".jsp" to find a JSP
with that name

rover EIBIR) index.faces index.jsp
Faces [
response serviet response
\
index.jsp
2 -4

For JSF to work properly, all requests from the client must be routed through the Faces servlet.
The servlet will use the input URL to find the JSP for the request.

In this case, given the servlet configuration on the last page, the Faces servlet will process
"index.jsp" when the browser submits "index.faces".

There's nothing special about "*.faces" either -- you can use a different extension or so-called
"path mapping" instead.

Also note that it's important that clients do NOT directly access a JSF JSP, since it won't work
properly if they do.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Optional: Preventing Direct JSP Access

- Faces JSPs must be processed by the Faces servlet
and should not be accessed directly from a browser
 To disallow direct access, you can write a
security-constraint element in the Web deployment
descriptor
web.xml

1 <security-constraint>

2 <web-resource-collection>

3 <web-resource-name>Hide JSPs</web-resource-name>
4 <url-pattern>/index.jsp</url-pattern>

5 <url-pattern>/addstudent.jsp</url-pattern>

6
7
8

</web-resource-collection>
<auth-constraint>

9 <description>

10 Since we define no roles, no direct access
11 from the client

12 </description>

13 </auth-constraint>

14 </security-constraint>

2 -5

This step is optional, but it's a good idea since it prevents clients from directly accessing JSPs
and bypassing the Faces servlet. Note for this to really work, you need to write an entry for
EVERY JSP in the Web application.

Also note that if the client does try to access a JSP directly with this in place, they client may
get a security exception response that they might not understand.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Optional: Providing a Start Page

« JEE Web applications can define a welcome-file that
acts as the start page of the application

* In JSF, the welcome JSP typically forwards to the first
"real” page in the application, via the Faces servlet

web.xml

<welcome-file-Tlist>
<welcome-file>start.jsp</welcome-file>
</welcome-file-Tist>
start.jsp

<jsp:forward page="/index.faces"/>

2 -6

With the JEE Web application "welcome-file" mechanism, the application server directly invokes
the welcome file, bypassing the Faces servlet, which doesn't work properly.

To have a welcome file that works properly, define the welcome file in the Web deployment

descriptor and have the JSP simply forward to the "real" start page, specifying a URL that's
processed by the Faces servlet.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

JSF Tag Libraries

- JSF defines two tag libraries you can use in JSPs:

« The core library is view-independent and lets you
preform validation, data conversion and so forth

« The HTML library lets you define input forms - you

should use this library instead of standard HTML
tags

<%@taglib
uri="http://java.sun.com/jsf/core" prefix="f"%>

<%@taglib
uri="http://java.sun.com/jsf/html" prefix="h"%>

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Sample JSF Page

1 <%@taglib uri="http://java.sun.com/jsf/htm1" prefix="h"%>
2 <%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
3 <html>

4 <head>

5 <title>Add Student</title>

6 </head>

7 <f:view>

8 <body>

9 <h:form>

10 <p>Student name:<h:inputText

11 value="#{student.name}"/></p>

12 <p>Student ID: <h:inputText

13 value="#{student.id}"/></p>

14 <p>GPA: <h:inputText value="#{student.gpal"/></p>
15 <p><h:commandButton value="Submit"

16 action="#{student.addStudent}"/></p>

17 </h:form>

18 </body>

19 </f:view>

20 </html>

2 -8

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Managed Beans

- JSF applications use managed beans to represent
business data and logic

« Managed beans expose properties via get/set
methods

» You configure managed beans in the Faces
configuration file and specify their scope

public class Student .
; faces-config.xml

1

2

3 A <managed-bean>

4 public int getId() <managed-bean-name>
> { student

? o </managed-bean-name>
8

9

public void setId(int i) <m32?3?gt2322tc1ass>
{ </managed-bean-class>
10 ot <managed-bean-scope>
11 } request
12 ¥ </managed-bean-scope>
2-9 </managed-bean>

Managed beans expose properties by defining get/set methods and can provide logic by
providing methods.

A JSF page can access a managed bean's properties and methods using the JSF Expression
Lanaguage.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Introduction to the JSF Expression
Language

« JSF provides an expression language so that page

authors can access managed bean properties as well
as several predefined objects (e.g. cookie)

« JSF version 1.2 supports the Unified Expression
Language, which unifies the JSF EL with the
standard JSP expression language

« JSF expressions reside within JSF tags and have
basic syntax #{expr}

#{student.id}

#{student.gpa}

2 -10

When you write a JSF expression that references a property, behind the scenes, JSF calls the
bean's get/set methods.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Introduction to JSF Components

A JSF page comprises one or more components,
each of which displays content and/or accepts user
input

« The Faces servlet uses JSF tags in the JSP to build
a component tree of objects on the server

« The standard JSF components generate HTML

JSF Tag Component class
<h:form> Browser EEX UlIForm
<h:inputText> Name: Ullnput
<h:inputText> Stdent: Ulinput
<h:inputText> o Ulinput

<h:commandButton> UlICommand

2 -11

In a JSF JSP, you use JSF custom actions (tags) to define the form. At runtime, the JSF controller
builds a component tree from the custom actions, using component classes defined by
JSF.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The Component Tree

« When the Faces servlet processes a request, it first
builds a component tree and lets the tree

participate in processing the request and generating
a response

Browser Q@E Web Container

e — iR

UIForm

\

Ullnput Ullnput Ullnput

UllCommand

2 - 12

Components are the heart of a JSF application -- they provide the user interface. JSF borrowed
this notion from client-side GUIs like Visual Basic or Java Swing.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Typical Request Processing

5. User fills in form, presses Submit
1. GET addstudent.faces 6. POST addstudent.faces
8. Call managed bean method
Faces servlet
2. Map to addstudent.jsp > 9. Navigate to new page

addstudent.jsp 4. Generate 7. Update tree (decode)
HTML (encode)

3. Build component tree

UlViewRoot
> | <

UlForm

2 1 3 Ulinput Ulinput Ulinput UliComman d

To start this flow, the user first enters the URL for a page, which typically has an extension of
.faces. This invokes the Faces servlet, which finds the matching JSP and invokes the JSP.

The JSF actions in the JSP collaborate to build the component tree. The Faces servlet then
renders the JSP and component tree. All non-JSF text (e.g. HTML paragraphs) are passed
back verbatim, and the JSF components render their HTML equivalent. For example, the
h:inputText tag's component generates an HTML tag like <input type="text">. This process is
known as encoding.

The user then fills in the form and submits it back to the same URL. The Faces servlet finds the
component tree and lets the tree work with the user input, a process known as decoding.
The result is that the each component captures its tag's user input and stores in the specified
property in the managed bean.

The Faces servlet then invokes the method specified by the Submit button's JSF expression. The

method processes the request (examining the user-input) and returns a string which the
servlet uses to navigate to a new page.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Invoking an Application Method

« When the user submits the form, the Faces servlet
lets the component tree decode it and update
managed-bean properties, then invokes the method
specified on the submit button

<h:commandButton
value="Add student"
action="#{student.addStudent}"/>

private int id;

private double gpa;
private String name;

public String addStudent

{
// process id,gpa,name as required
// store objects at request or session scope
if (ok) return "success"
else return "bad-news";
2 - 14 }

Before calling "addStudent”, the framework has initialized the "id", "gpa" and "name”

properties in the managed bean, so "addStudent” can use those values to perform data
processing.

Based on the results of processing, the "addStudent” method returns a mapping string -- the
Faces servlet uses this string to determine to which page to navigate.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Accessing the Servlet Environment

« The processing method in the managed bean
typically accepts no parameters

« If the method needs to access the JSF and/or servlet
environment (e.g. the servlet request), it can retrieve
the JSF external context

1 ExternalContext context =

2 FacesContext.getCurrentInstance() .getExternalContext();
3

4 HttpServletRequest request =

5 (HttpServletRequest)context.getRequest();

6

7 Cookie[] cookies = request.getCookies();

2 - 15

Often when processing a request, the method needs to work with the servlet or JSF
environment. To gain access, the method can retrieve an external context and use it to retrieve
objects.

For example, here we show using the ServletRequest object to retrieve the array of HTTP
cookies passed on a request.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Introduction to Navigation

* You can configure navigation rules in the Faces
configuration file

« The processing method returns a logical string that
Faces uses to navigate to another page

<navigation-rule>
<from-view-id>/addstudent.jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/confirmation. jsp</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>bad-news</from-outcome>
<to-view-id>/failure.jsp</to-view-id>
0 </navigation-case>
1 </navigation-rule>

P RO NO VIR WNE

2 - 16

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Chapter Summary

In this chapter, you learned:
« How to configure JSF

« How JSF uses URLs
« The fundamental JSF processing model

2 - 17

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

