
Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

JEE application servers at version 5 or later include the required JSF libraries so that
applications need not configure them in the Web app.

Instead of using JSPs for the view, you can use an alternative technology such as Facelets or
Velocity.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

You must configure the JSF servlet in web.xml and assign it a URL pattern. There is no
requirement for the URL pattern, but the *.faces extension mapping shown here is common.

1 <servlet>
2 <servlet-name>Faces Servlet</servlet-name>
3 <servlet-class>
4 javax.faces.webapp.FacesServlet
5 </servlet-class>
6 <load-on-startup>-1</load-on-startup>
7 </servlet>
8 <servlet-mapping>
9 <servlet-name>Faces Servlet</servlet-name>
10 <url-pattern>*.faces</url-pattern>
11 </servlet-mapping>

web.xml

2 - 3a web.xml

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

For JSF to work properly, all requests from the client must be routed through the Faces servlet.
The servlet will use the input URL to find the JSP for the request.

In this case, given the servlet configuration on the last page, the Faces servlet will process
"index.jsp" when the browser submits "index.faces".

There's nothing special about "*.faces" either -- you can use a different extension or so-called
"path mapping" instead.

Also note that it's important that clients do NOT directly access a JSF JSP, since it won't work
properly if they do.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This step is optional, but it's a good idea since it prevents clients from directly accessing JSPs
and bypassing the Faces servlet. Note for this to really work, you need to write an entry for
EVERY JSP in the Web application.

Also note that if the client does try to access a JSP directly with this in place, they client may
get a security exception response that they might not understand.

1 <security-constraint>
2 <web-resource-collection>
3 <web-resource-name>Hide JSPs</web-resource-name>
4 <url-pattern>/index.jsp</url-pattern>
5 <url-pattern>/addstudent.jsp</url-pattern>
6 . . .
7 </web-resource-collection>
8 <auth-constraint>
9 <description>
10 Since we define no roles, no direct access
11 from the client
12 </description>
13 </auth-constraint>
14 </security-constraint>

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

With the JEE Web application "welcome-file" mechanism, the application server directly invokes
the welcome file, bypassing the Faces servlet, which doesn't work properly.

To have a welcome file that works properly, define the welcome file in the Web deployment
descriptor and have the JSP simply forward to the "real" start page, specifying a URL that's
processed by the Faces servlet.

<welcome-file-list>
 <welcome-file>start.jsp</welcome-file>
</welcome-file-list>

<jsp:forward page="/index.faces"/>

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

<%@taglib
 uri="http://java.sun.com/jsf/core" prefix="f"%>

<%@taglib
 uri="http://java.sun.com/jsf/html" prefix="h"%>

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

1 <%@taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
2 <%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
3 <html>
4 <head>
5 <title>Add Student</title>
6 </head>
7 <f:view>
8 <body>
9 <h:form>
10 <p>Student name:<h:inputText
11 value="#{student.name}"/></p>
12 <p>Student ID: <h:inputText
13 value="#{student.id}"/></p>
14 <p>GPA: <h:inputText value="#{student.gpa}"/></p>
15 <p><h:commandButton value="Submit"
16 action="#{student.addStudent}"/></p>
17 </h:form>
18 </body>
19 </f:view>
20 </html>

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Managed beans expose properties by defining get/set methods and can provide logic by
providing methods.

A JSF page can access a managed bean's properties and methods using the JSF Expression
Lanaguage.

1 public class Student
2 {
3 . . .
4 public int getId()
5 {
6 . . .
7 }
8 public void setId(int i)
9 {
10 . . .
11 }
12 }

<managed-bean>
 <managed-bean-name>
 student
 </managed-bean-name>
 <managed-bean-class>
 univ.Student
 </managed-bean-class>
 <managed-bean-scope>
 request
 </managed-bean-scope>
</managed-bean>

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

When you write a JSF expression that references a property, behind the scenes, JSF calls the
bean's get/set methods.

#{student.id}

#{student.gpa}

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

In a JSF JSP, you use JSF custom actions (tags) to define the form. At runtime, the JSF controller
builds a component tree from the custom actions, using component classes defined by
JSF.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Components are the heart of a JSF application -- they provide the user interface. JSF borrowed
this notion from client-side GUIs like Visual Basic or Java Swing.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

To start this flow, the user first enters the URL for a page, which typically has an extension of
.faces. This invokes the Faces servlet, which finds the matching JSP and invokes the JSP.

The JSF actions in the JSP collaborate to build the component tree. The Faces servlet then
renders the JSP and component tree. All non-JSF text (e.g. HTML paragraphs) are passed
back verbatim, and the JSF components render their HTML equivalent. For example, the
h:inputText tag's component generates an HTML tag like <input type="text">. This process is
known as encoding.

The user then fills in the form and submits it back to the same URL. The Faces servlet finds the
component tree and lets the tree work with the user input, a process known as decoding.
The result is that the each component captures its tag's user input and stores in the specified
property in the managed bean.

The Faces servlet then invokes the method specified by the Submit button's JSF expression. The
method processes the request (examining the user-input) and returns a string which the
servlet uses to navigate to a new page.

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Before calling "addStudent", the framework has initialized the "id", "gpa" and "name"
properties in the managed bean, so "addStudent" can use those values to perform data
processing.

Based on the results of processing, the "addStudent" method returns a mapping string -- the
Faces servlet uses this string to determine to which page to navigate.

<h:commandButton
 value="Add student"
 action="#{student.addStudent}"/>

private int id;
private double gpa;
private String name;
. . .

public String addStudent
{
 // process id,gpa,name as required
 // store objects at request or session scope

 if (ok) return "success"
 else return "bad-news";
}

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Often when processing a request, the method needs to work with the servlet or JSF
environment. To gain access, the method can retrieve an external context and use it to retrieve
objects.

For example, here we show using the ServletRequest object to retrieve the array of HTTP
cookies passed on a request.

1 ExternalContext context =
2 FacesContext.getCurrentInstance().getExternalContext();
3
4 HttpServletRequest request =
5 (HttpServletRequest)context.getRequest();
6
7 Cookie[] cookies = request.getCookies();

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

1 <navigation-rule>
2 <from-view-id>/addstudent.jsp</from-view-id>
3 <navigation-case>
4 <from-outcome>success</from-outcome>
5 <to-view-id>/confirmation.jsp</to-view-id>
6 </navigation-case>
7 <navigation-case>
8 <from-outcome>bad-news</from-outcome>
9 <to-view-id>/failure.jsp</to-view-id>
10 </navigation-case>
11 </navigation-rule>

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2010. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

