Developing With Java Persistence

® Annotations
® Primary Keys
e Inheritance Strategies

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Top Down vs Bottom Up

e In a top-down approach, you first write the
object classes and generate database schema
from the object model

e In a bottom-up approach, you generate object
classes from database table definitions

e A meet in the middle approach combines
top-down and bottom up

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Java Persistence Annotations

e The persistence manager needs "metadata” about
your objects and tables so it can manage their
persistence

e One way to provide the metadata is to write JDK
5 annotations

Annotation Description

Specifies a mapped column
@Column for a property or field
@Entity Specifies that a class is an entity

@GenereratedValue | Provides for generation of primary keys

@ld Specifies that a field or property is a prmary key

@Inheritance Specifies inheritance strategy

@SequenceGenerator | Defines primary keys from a sequence table

@Table Specifies primary table for an entity

2 -3 @TableGenerator Defines primary keys from a database table

There are many other persistence annotations - this figure shows only the ones we will cover
in this chapter.

Instead of using annotations, you can instead write an XML file named orm.xml that provides
the metadata.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Definining an Entity

e The @Entity annotation designates a class as an
entity so that a persistence manager can
manage its persistent state

1 import javax.persistence.Entity;

2

3 @Entity

4 public class Policy implements Serializable
5 {

6 .

7 }

2 -4

You can optionally provide a name for the entity using this annotation.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Rules for Entities

e The class must be annotated with the javax.
persistence.Entity annotation

e The class must have a public or protected,
zero-argument constructor

e The class must not be declared final

e If an entity will be passed through a session
beans remote business interface, the entity must
implement the Serializable interface

e Persistent fields must be declared private,
protected, or package-private, and can only be
accessed directly by the entity classs methods

2 -5

Actually, using the @Entity annotation is not required - alternatively, you can write an XML
configuration file.

It's possible to use abstract classes as entities.

Clients of the entity must access the entity's state via get/set methods, but methods in the
entity class can access fields directly.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Mapping State

@ Java Persistence supports mapping either fields
or JavaBean-style properties to database
columns

® You use the @ID or @Column annotations to
indicate how you want to map

@Id

private int policyNumber;
@Column (name="CUST_NAME")
private String holderName;

private int policyNumber;
private String holderName;

@ld
public int getPolicyNumber() {}
public void setPolicyNumber(int n) {}

@Column (name="CUST_NAME")
public String getHolderName() {}
public void setHolderName(String s) {}

2 -6

You shouldn't mix the two approaches -- either annotate fields or properties, but not both.

If you don't write an @Column annotation, the persistence manager assumes that the column
name matches the property or field name.

The @ld annotation indicates that this field or property is part or all of the entity's primary key.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Mapping a Table's Columns

@ You can use the @Table annotatation to define
which table the objects of an entity class should
map to

® You can use the @Column annotation to indicate
the column name that maps an object's properties
or fields

1 Q@Entity
@Table(name="INS_POLICY")
public class Policy implements Serializable

{
@Id

2

3

4

5

6 @Column (name="POL_ID)

7 private int policyNumber;
8 @Column (name="CUST_NAME")
9 private String holderName;
1

1

R O

If you don't write a @Table annotation, the table's name must match the entity's name.

There is also a @SecondaryTable annotation that lets you split an entity's properties amongst
more than one table.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Transient Fields

e By default, the persistence manager persists all
fields or properties in the entity

@ You can use the @Transient annotatation to
indicate that a field or property should not be

persisted

1 @Entity

2 @Table(name="INS_POLICY")

3 public class Policy implements Serializable
4 {

5 -

6 private String claimImageFileName;
7 @Transient

8 private ImageIcon claimImage;

9

10 }

N
|
(0]

Here we indicate that we don't want a image's binary data to be persisted since we do persist
the file name from which we can load the image.

Since the persistence manager doesn't initialize transients, it's up to the entity to do so itself,

typically by writing a method annotated with @PostLoad. The persistence provider calls such
methods after the persistent portion of an entity is established.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The Primary Key

e Each entity class must have some unique state so
that objects can be differentiated

@ You use the @ld annotation to mark a field or
property as part or all of the primary key
@ Java Persistence also supports composite keys

and separate key classes

Policy
Entity INS_POLICY
’ policyNumber=14
POL_ID CUST_NAME
Policy 14 Bill Smith
Entity 08 Sue Jones

policyNumber=98

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Auto Generated Keys

e Many database scenarios involve keys that are
generated either by the database itself or by the
persistence provider

® You use the @GeneratedValue annotation to
configure the generation strategy

public @interface GeneratedValue

{
GenerationType strategy() default AUTO;

String generator() default ;

}
public enum GenerationType
{
TABLE, SEQUENCE, IDENTITY, AUTO
}
2 - 10

Here we show the annotation definition for the @GeneratedValue annotation.

Note that both the "strategy” and "generator” elements (parameters) are optional with default
values.

If you use the TABLE or SEQUENCE generation types, then you must write a separate
@TableGenerator or @SequenceGenerator annotation.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Auto and Identity Key Strategies

e The AUTO strategy indicates that the persistence
provider should should choose the best way to
generate keys

e The IDENTITY strategy indicates that the provider
must use some sort of auto-increment or identity
column in the database

1 @Entity
2 @Table(name="INS_POLICY")
3 public class Policy implements Serializable
4 {
5 @Id
6 @Column (name="POL_ID)
7 @GeneratedValue(strategy=GenerationType.AUTO)
8 private int policyNumber;
9
10 }
2 - 11

The AUTO strategy is common and flexible, especially in top-down scenarios, since it allows
the persistence provider to choose the best key-generation technique supported by the
database in use.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Table and Sequence Key Strategies

e To use the SEQUENCE strategy, the database
itself must contain a sequence table from which
the primary keys are fetched

@ To use the TABLE strategy, the database itself
must contain a separate table from which keys
are obtained

1 @Entity

2 @Table(name="INS_POLICY")

3 public class Policy implements Serializable

4 {

5 @Id

6 @Column (name="POL_ID)

7 @SequenceGenerator(name="policyGen",

8 sequenceName="POLICY_SEQ", allocationSize = 1)
9 @GeneratedValue(strategy=GenerationType.SEQUENCE,
10 generator="policyGen')

11 private int policyNumber;

12

2-12 13 1

If you choose either of these strategies, then you must write a separate @SequenceGenerator
or @TableGenerator annotation. The SEQUENCE strategy is common for Oracle installations,
which provide a fast and efficient sequence-table implementation.

If you choose the TABLE strategy, there must be a user-defined table in the database from
which the keys are extracted.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Inheritance Overview

e Object models often exhibit inheritance and
polymorphism to aid in code re-use and

maintenance

e Relational databases generally don't directly
support inheritance, leading to an O/R "impedance”

DeskClerk

mistmatch
Person
Employee
Janitor
2 - 13

There a couple of key benefits to using inheritance:

1. Inheritance lets you create models that closely approximate the real-world entity upon
which the model is based. Lowering the so-called "representational gap" makes your software

easier to understand and develop.

2. When combined with polymorphism (covered later), inheritance lets you create systems that

are easy to extend without risking breakage to existing code.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Inheritance Strategies

@ One table per class hierarchy
e A table per concrete class
e A table per subclass (JOINED)

2 - 14

We will not cover the "table per concrete class" strategy since it's not used as often as the
other two.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Single Table Inheritance

e In this strategy, a single table holds data for all
classes in the hierarchy

e This is simple and fast, but isn't normalized and
requires nullable columns

e The table must contain a "discriminator” column
that indicates the object's type

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
public class Student implements Serializable

B jdbc:hsgldb:hsgl: f flocalhos
ADVISOR,

} Student SEQUEMCE
id Bl STUDENT
—name schema: PUBLIC
-gpa STUDENTID STUDENTID|DTYPE |NAME [GPA [ADYISOR_SERIALMUMBER [MAJOR |
CIES 2 Student Sue 2.45 4 {null
NAME

Zr GPA 3 Student Bill 3.22 4 {nully

ADVISOR_SERIALMUMEBE 5 Gradstudent Horace 4.0 4 STiRnCe
GradStudent MAJOR -

-major Indices
Properties

866 HSQL Database Manager
SELECT * FROM STUDENT
B Clear

Execute

2—15 c— .,,'(_ e] ‘,'

This strategy results in tables that aren't normalized, since superclass objects will have "null"
column entries, for example as shown here, a "Student” has no "major” (that's a property
introduced by the GradStudent subclass).

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Table Per Subclass Inheritance

e In this strategy, each entity has its own normalized
table

e This strategy is not as fast as the single-table
strategy, but allows for not null columns

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Student implements Serializable

{

ene6 HSQL Database Manager

B jdhchsgldibchsglf flocalhos|! SELECTE= FROM GRADSTUDENﬂ
} ADVISOR, !
B GRADSTUDENT Clear
schema: PUBLIC
STUDENTID
MAJOR STUDENTID [MAJOR | ™
Indices
—gpa SEQUENCE
ﬂl B STUDENT

Execute

Student
-id
-name

5 Science

schema: PUBLIC
STUDENTID
GradStudent DTYPE
-major MAME
GRA
ADYISOR_SERIALMUMEBE
Indices
Properties .

2 - 16 o E============—==———m—-x R0

This strategy is elegant, but is slower than the single-table strategy, since it requires that the
persistence provider do a table join to retrieve all of the data for subclass objects.

Note that in the database screenshot, the "STUDENTID" column in GRADSTUDENT is a foreign
key into the STUDENT table.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Entity Lifecycle Callbacks

@ You can annotate methods so that the persistence
provider invokes them after certain lifecycle events

Called before entity saved
Called after entity saved

@PrePersist
@PostPersist

@PreRemove - Called before entity deleted
@PostRemove - Called after entity deleted
@PreUpdate - Called before entity is synchronized
@PostUpdate - Called after entity is synchronized
@PostLoad - Called after entity loaded into context
1 @Entity
2 public class Policy implements Serializable
3 {
4 ..
5 @PostlLoad
6 public void myLoad() {. . .}
7 }
2 - 17

You can put lifecycle callback methods either in the entity itself or in a separate class.
Callback methods in the entity class have the signature:

public void xxxx()

Callback methods in a separate class have the signature:

public void xxxx(Object o) -—- passed entity instance

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Configuring the Persistence Provider

e To configure, you write a file named persistence.
xml

e For standalone Java applications, this file must
reside in a META-INF folder

<?xml version="1.0" encoding="windows-1252" 7>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance". . .>
<persistence-unit name="default" transaction-type="RESOURCE_LOCAL">
<provider>oracle.toplink.essentials.PersistenceProvider</provider>
<class>university.Student</class>
<class>university.Advisor</class>
<class>university.GradStudent</class>
<properties>
<property name="toplink.jdbc.driver" value="org.hsqldb.jdbcDriver"/>
<property name="toplink.jdbc.ur1" value="jdbc:hsqldb:hsql://localhost"/>
<property name="toplink.jdbc.user" value="sa"/>
<property name="toplink.jdbc.password" value=""/>
<property name="toplink.ddT-generation" value="drop-and-create-tables"/>
<property name="toplink.target-database"
value="oracle.toplink.essentials.platform.database.HSQLPlatform"/>
</properties>
</persistence-unit>
</persistence>

2 - 18

In a Java EE application, you don't need to explicitly name the entity classes, since the container
will scan JPA JARs to discover them. The "class” elements are required for Java SE applications,
however.

The properties are obviously provider-specific. Read your JPA provider's documentation for
details.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Chapter Summary

In this chapter, you learned:

e About primary keys and auto generation
e Different ways of implementing inheritance

2 - 19

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

