
Lab 7 - 1
Copyright  Descriptor Systems 2014. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

Lab 7: Spring and JDBC

In this lab, you will write an application that uses Spring's SimpleJdbcTemplate support for writing data access objects
(DAO).

Objectives:

• To access relational data using Spring SimpleJdbcTemplate

Part 1: Setting Up the Environment

In this part, you will configure an H2 database that your Spring program will work with.

Steps:

_1. If you did NOT do Lab06 Spring MVC, then please execute the steps in Lab06 Part 1 to configure Tomcat.

_2. Next, you need to set up Tomcat so it can access the database you will later create:

a. Stop the Tomcat server if it's running.

Using Windows Explorer or My Computer, copy the {Lab Installation Directory}/lib/h2/h2-1.3.161.jar
file to the {Tomcat Installation Directory}/lib folder.

_3. Next, you need to start the H2 database server and its adminstrative GUI, which is Web-based. Here are the
instructions for Windows Vista or later. SKIP THIS IF YOUR COMPUTER HAS WINDOWS XP.

a. The database server runs best in an Adminstrative command prompt. To open the command prompt, click
the Windows Start menu and enter cmd into the Search box, to find cmd.exe, but don't press Enter.

Right-click on cmd.exe and choose Run As Adminstrator to start the privileged command prompt.

b. In the command prompt, change to {Lab Installation Directory}/lib/h2. If your computer has the standard
lab setup, enter something like:

cd \Users\username\springclass\lib\h2

Note: You will need to substitute your actual user name.

c. To start the H2 database server and admin GUI, enter:

java -jar h2-1.3.161.jar

The server runs invisibly in the command prompt, and launches the Web-based GUI into your browser.

_4. Here are the instructions to start the H2 database if your computer has Windows XP. SKIP THIS STEP IF
YOUR COMPUTER HAS WINDOWS VISTA OR LATER AND YOU DID THE PREVIOUS STEP.

Using Windows Explorer or My Computer, navigate to {Lab Installation Directory}/lib/h2/h2-1.3.161.jar and
double-click on the JAR - this starts the database running and opens a Web-based administration GUI.

_5. In the H2 GUI, set the JDBC URL to jdbc:h2:tcp://localhost/~/test, typing this VERY carefully.

Set both the User Name and Password to sa, then press Connect.

Lab 7 - 2
Copyright  Descriptor Systems 2014. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

_6. Enter the following into the large entry box and then press the Run (Ctrl+Enter) button to create and populate your
database (you can copy and paste from a starters file in {Lab Installation Directory}/starters/spring/lab11}):

CREATE TABLE Segment
(
 SegmentNumber INTEGER NOT NULL IDENTITY,
 SegmentDate DATE,
 FlightNumber INTEGER,
 OrigCity VARCHAR(10),
 Miles INTEGER,
 CONSTRAINT PK_Item PRIMARY KEY(SegmentNumber)
);

INSERT INTO Segment VALUES (NULL, '2009-10-18', 333, 'SFO', 367);
INSERT INTO Segment VALUES (NULL, '2009-10-18', 745, 'LAX', 1900);
INSERT INTO Segment VALUES (NULL, '2009-10-22', 453, 'BOS', 1900);
INSERT INTO Segment VALUES (NULL, '2009-10-18', 112, 'LAX', 367);

Press the Clear button then enter and run:

SELECT * FROM segment

You should see four segment rows.

Part 2: Setting Up the Web Project

In this part, you will create a servlet-based Web application that will act as the user interface for a Spring application
that queries relational data using Spring's SimpleJdbcTemplate.

Steps:

_1. This lab depends on successfully completing the basic parts of lab01 - it doesn't depend on the "experiments".
If you did not finish the basic part of lab01, you should either finish it or ask the instructor to help you get that
lab's solution.

_2. If necessary, switch to the JEE perspective by choosing Window - Open Perspective - Other - Java EE (default).

_3. Eclipse uses Dynamic Web Applications for projects that use servlets and JSPs, so you will start by creating
such a project:

a. Choose File - New - Dynamic Web Project to start the wizard.

b. On the first wizard page, for the Project name, enter springlab07Web, then press Next.

c. On the next wizard page, press Next.

d. On the last wizard page, put a checkmark in the Generate web.xml deployment descriptor box, then press
Finish.

e. In the Project Explorer, expand the new project and note the following:

• There is a Java Resources/src folder in which you will put your Java code including servlets, Spring
bean classes and so forth.

Lab 7 - 3
Copyright  Descriptor Systems 2014. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

• There is a WebContent folder in which you will put any HTML files, JSPs and so forth. There
is a subfolder of WebContent named WEB-INF that contains the standard JEE Web deployment
descriptor (web.xml) and other files.

_4. Next, copy files from the lab01 project to the new project:

a. In the Project Explorer pane, expand the springlab01 project's src folder, then right-click on the
com.oaktreeair.ffprogram package and choose Copy.

b. In the Project Explorer, expand the springLab07Web folder, then right-click on the src folder and choose
Paste to copy the Spring bean classes to the new project.

You will have compile errors that you will fix in a moment.

c. Repeat the above step to copy the spring.xml file from the springlab01 project, copying into the Lab07Web
project's WebContent/WEB-INF folder.

_5. Next, configure the project for Spring:

a. Open Windows Explorer or My Computer, then resize your windows so you can see both Eclipse and
Windows Explorer.

In Windows Explorer, navigate to {Lab Installation Directory}/lib/spring3.1.4. If your computer has the
standard lab setup on Windows XP, this directory is:

C:\springclass\lib\spring3.1.4

On Windows Vista or later:

C:\Users\username\springclass\lib\spring3.1.4

b. In Windows Explorer, highlight all of the JARs then drag and drop them to the Eclipse Project Explorer
onto the WebContent/WEB-INF/lib folder.

c. In the Project Explorer, double-click on the WEB-INF/web.xml file to open it into the Web deployment
descriptor editor.

Click the Source tab at the bottom of the editor window, then copy and paste the following text from the
{Lab Installation Directory}/starters/lab06/listener.txt above the welcome-file-list start tag:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/spring.xml</param-value>
</context-param>
<listener>
 <display-name>ContextLoaderListener</display-name>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

This configures the Web application so that it can access a Spring application context.

Save and close the deployment descriptor.

_6. Next, you will configure a data source that represents the database. Follow these steps:

Lab 7 - 4
Copyright  Descriptor Systems 2014. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

a. Create a file named context.xml in the WebContent/META-INF folder.

b. Complete the file, copying from {Lab Installation Directory/spring/starters/lab07/context.txt so it
looks like:

<Context path="/springlab07Web" docBase="springlab07Web" debug="0">
 <Resource name="jdbc/flier"
 auth="Container"
 type="javax.sql.DataSource"
 username="sa" password="sa"
 driverClassName="org.h2.Driver"
 url="jdbc:h2:tcp://localhost/~/test"/>
</Context>

This defines a data source with JNDI name jdbc/flier.

_7. Next, create a resource reference for the data source in the Web project:

a. In the Project Explorer, double-click on the WebContent/WEB-INF/web.xml file to open it into the
deployment descriptor editor.

b. After the listener end-tag, define the resource reference, copying from {Lab Installation Directory}/
starters/lab07/resource.txt:

<resource-ref>
 <res-ref-name>jdbc/flier</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

c. Save and close the Web deployment descriptor.

Part 3: Spring JdbcTemplate DAO

In this part, you will create a data access object (DAO) class using the Spring JdbcTemplate type.

Steps:

_1. Create an interface for your DAO:

a. In the Project Explorer, right-click on the Java Resources: src folder and choose New - Interface and create
an interface named SegmentDao in a package named com.oaktreeair.ffprogram.dao.

b. Add the following methods to the interface:

public int getSegmentCount();
public Collection<Segment> findAllSegments();
public int insertSegment(Segment s);

You will need to import java.util.Collection and com.oaktreeair.ffprogram.Segment.

Lab 7 - 5
Copyright  Descriptor Systems 2014. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

_2. Create the DAO implementation class:

a. In the Project Explorer, right-click on the JavaResources: src/com.oaktreeair.ffprogram.dao package and
choose New - Class to start the wizard.

b. On the first wizard page, ensure that the Package is com.oaktreeair.ffprogram.dao.

For the Name, enter SegmentDaoImpl.

For the Interfaces, press the Add button, and in the Choose interfaces box, start typing Seg, then select
SegmentDao.

Press OK followed by Finish to complete the wizard. Eclipse opens the new class into the editor.

_3. Annotate the DAO as a repository component and give it a name:

@Repository("segmentDao")

Import the correct type. Note the Spring ID of the DAO is segmentDao. You will need that ID when you later
write servlets.

_4. Let's start by using dependency injection to obtain the resources the DAO needs:

a. Define a field to hold the JDBC template:

private JdbcTemplate template;

Import the correct type.

b. Inject a data-source reference and create the template:

@Autowired
public void setDataSource(DataSource ds)
{
 template = new JdbcTemplate(ds);
}

Import the javax.sql.DataSource type.

_5. Let's start by implementing only the getSegmentCount method:

a. Execute a SQL command via the template to retrieve the count of rows in the Segment table:

int count = template.queryForInt(
 "SELECT COUNT(*) FROM Segment");

b. Modify the return statement to return the count.

Part 4: Web Front End for the DAO

In this part, you will configure the DAO with Spring and write a simple servlet to invoke its getSegmentCount method.

Steps:

_1. Configure the data source in the Spring configuration file:

Lab 7 - 6
Copyright  Descriptor Systems 2014. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

a. Open the WebContent/WEB-INF/spring.xml Spring configuration file into the editor. Press the Source tab
at the bottom of the editor window.

b. If necessary, enter the following text to ensure that Spring scans to find your classes configured with
@Component and/or @Repository annotations:

<context:component-scan
 base-package="com.oaktreeair.ffprogram"/>

c. Enter the following text to configure the data source and the DAO itself:

<jee:jndi-lookup id="flierDataSource"
 jndi-name="jdbc/flier" resource-ref="true"/>

Note how the JNDI name matches the context.xml configuration file you created earlier in the lab.

_2. Next, create a simple servlet that will access the segment count via the DAO:

a. In the Project Explorer, right-click on the springlab07Web project and choose New - Servlet to start the
wizard.

b. On the first wizard page, for the Java package, enter com.oaktreeair.ffprogram.servlets.

For the Class name, enter DisplaySegmentCount, then press Next.

c. On the next page, examine the defaults, then press Next.

d. On the final page, in the "Which method stubs" section, uncheck the doPost box, then press Finish.

Eclipse opens the new servlet into the Java editor.

_3. Complete the new servlet's doGet method:

a. Retrieve a reference to the Spring application context:

ServletContext servletContext = getServletContext();
WebApplicationContext ctx =
 WebApplicationContextUtils.getRequiredWebApplicationContext(
 servletContext);

Choose Source - Organize Imports so that Eclipse imports the required types.

b. Retrieve a reference to the DAO from the application context in the normal fashion:

SegmentDao dao = . . .;

c. Initialize the servlet's HTML output stream:

response.setContentType("text/html");
PrintWriter out = response.getWriter();

d. Output simple HTML content containing the segment count:

Lab 7 - 7
Copyright  Descriptor Systems 2014. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

out.println("<html><body>");
out.println("<p>Segment count: " +
 dao.getSegmentCount() + "</p>");
out.println("</body></html>");

e. Import types as necessary, then save the servlet.

_4. To test, in the Project Explorer, right-click on DisplaySegmentCount.java and choose Run As - Run on Server,
select Tomcat, then press Finish. Wait for the server to start - you should see a Web page with the segment
count (4).

Part 5: Completing the Application

In this part, you will complete the DAO and write servlets as the user interface.

Steps:

_1. You will start by implementing the DAO's findAllSegments method.

First, create a nested inner class that knows how to create Segment objects from rows in the Segment database
table:

a. In the Project Explorer, right-click on JavaResources: src/com.oaktreeair.ffprogram.dao/
SegmentDaoImpl and choose New - Class to start the wizard.

b. On the first wizard page, ensure that the Package is com.oaktreeair.ffprogram.dao.

Put a checkmark in the Enclosing type checkbox - this causes the wizard to generate an inner class.

For the Name, enter SegmentRowMapper.

For Interfaces, press the Add button and start typing ParameterizedR and then select
ParameterizedRowMapper and press OK followed by Finish to complete the wizard.

_2. The wizard gave you a head start, but you need to tweak the inner class a bit:

a. Edit the inner class definition so it looks like:

public class SegmentRowMapper
 implements ParameterizedRowMapper<Segment>

b. Inside the nested class, add the mapRows method definition:

public Segment mapRow(ResultSet rs, int rowNum)
 throws SQLException
{
}

_3. Complete the SegmentRowMapper inner class's mapRow method:

a. Create a new Segment object using its zero-argument constructor.

Lab 7 - 8
Copyright  Descriptor Systems 2014. All Rights Reserved. Materials may not be reproduced in any form without prior written consent of Joel Barnum.

b. Call each of the "set" methods on the Segment object, initializing with data from the result set. For example,
to set the Segment's flightNumber property:

seg.setFlightNumber(rs.getInt("FlightNumber"));

Be sure to call ALL of the "set" methods. For your convenience, here is the Segment table schema:

CREATE TABLE Segment
(
 SegmentNumber INTEGER,
 SegmentDate DATE,
 FlightNumber INTEGER,
 OrigCity VARCHAR(10),
 Miles INTEGER
)

Note that you will need to map SQL types to their equivalent Java types by calling the appropriate
getXXXX() method on the result set.

c. Return the fully initialized Segment object.

_4. Update the DAO class to create a row mapper object:

a. In the SegmentDaoImpl class (NOT the SegmentRowMapper inner class), define a field to hold an instance
of the SegmentRowMapper class:

private SegmentRowMapper mapper;

b. Modify the setDataSource() method so that it creates an instance of the SegmentRowMapper class using
the zero-argument constructor, storing the reference in the field you just defined.

_5. Now complete the findAllSegments method:

a. Call the template's query method to return a list of Segments, using the mapper to convert from result set
to Segment object:

List<Segment> segments = template.query(
 "SELECT * FROM Segment", mapper);

b. Modify the return statement to return the list.

_6. In the same fashion as earlier, create a new servlet named DisplayAllSegments whose doGet() method uses the
DAO to retrieve the Segment list and then displays them. For extra credit (!), display the list in an HTML table.

_7. Run and test.

_8. If you have time, implement the DAO's insertSegment method. Then write an HTML input form to let the user
enter all of the Segment data except the segmentNumber (that's an auto-generated column in the database). The
HTML form's Submit button should invoke a new servlet that retrieve the HTML form data and calls the DAO's
insertSegment method to insert the new segment into the database.

_9. In the Servers tab, right-click on the Tomcat server and remove the springlab07Web project from the server,
then right-click again and stop the server.

